1. Cho ΔABC, các đường cao BH và CK cắt nhau tại E. Qua B kẻ đường thẳng Bx vuông góc với AB. Qua C kẻ đg thẳng Cy vuông góc với AC. Hai đg thẳng Bx và Cy cắt nhau tại D
a, C/m tứ giác BDCE là hình bình hành
b, M là trung điểm của BC. C/m N cũng là trung điểm của ED
c, Hình ΔABC thỏa mãn đkiện gì thì DE đi qua A
2. Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB, CD
a, Tứ giác DABF là hình gì ? vì sao
b, c/m 3 đg thẳng AC, BD , EF đồng qui C. Gọi giao của AC với DE và BF theo thứ tự là M và N. C/m tứ giác EMFN là hình bình hành
Bài 2:
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: ta có: DEBF là hình bình hành
nên Hai đường chéo DB và EF cắt nhau tại trung điểm của mỗi đường(1)
Ta có:ABCD là hình bình hành
nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra BD,EF,AC đồng quy