cho tam giác đều ABC có cạnh 3 cm
A/ Tính điện tích tam giác ABC
B/ Lấy M nằm trong tam giác ABC. Vẽ MI,MJ,MK lần lượt vuông góc với AB,AC,BC.Hãy tính MI+MJ+MK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta tính diện tích tam giác ABC đều, cạnh bằng 3cm.
Kẻ AH vuông góc BC tại H.
Theo đó ta có tam giác ABC đều, AH là đường cao nên đồng thời là trung tuyến.
Vậy thì \(BH=HC=1,5cm\)
Áp dụng định lý Pi-ta-go cho tam giác vuông AHC, ta có \(AH^2+HC^2=AC^2\Rightarrow AH^2=3^2-1,5^2=6,75\):
\(\Rightarrow AH=\sqrt{6,75}\left(cm\right)\)
Vậy thì \(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}.3.\sqrt{6,75}=\frac{3}{2}\sqrt{6,75}\left(cm^2\right)\) (1)
Lại có \(S_{ABC}=S_{MAB}+S_{MBC}+S_{MCA}=\frac{1}{2}AB.MI+\frac{1}{2}BC.MK+\frac{1}{2}AC.MJ\)
\(=\frac{1}{2}.3.\left(MI+MJ+MK\right)=\frac{3}{2}\left(MI+MJ+MK\right)\) (cm2) (2)
Từ (1) và (2) suy ra \(MI+MJ+MK=\sqrt{6,75}\left(cm\right)\)
a. hạ đương cao AK
suy ra BK=KC=3:2=1.5(cm)
Xét tam giac ABC có góc AKB=90
AK^2+BK^2=AB^2(đl py-ta-go)
AK=\(\dfrac{3\sqrt{3}}{2}\)
SABC=\(\dfrac{1}{2}.\dfrac{3\sqrt{3}}{2}.3=\dfrac{9\sqrt{3}}{4}\)
Kẻ đường cao AH của tam giác ABC, ta có:
\(MI^2+MJ^2+MK^2=MI^2+MA^2=\left(MI+MA\right)^2-2MI.MA\ge\frac{\left(MI+MA\right)^2}{2}\)
Lại có: \(MI+MA\ge AI\ge AH\), cho nên: \(MI^2+MJ^2+MK^2\ge\frac{AH^2}{2}\)(không đổi)
Dấu "=" xảy ra <=> M là trung điểm AH.