Tìm các số a, b, c biết : \(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{1}{a+b+c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=2\)(vì a+b+c khác 0)
\(\Rightarrow\frac{1}{a+b+c}=2\Rightarrow a+b+c=\frac{1}{2}\)
\(\frac{b+c+1}{a}=2\Rightarrow2a=b+c+1\Rightarrow3a=a+b+c+1\Rightarrow a=\frac{1}{2}\)
\(\frac{a+c+2}{b}=2\Rightarrow2b=a+c+2\Rightarrow3b=a+b+c+2\Rightarrow b=\frac{5}{6}\)
\(\frac{a+b-3}{c}=2\Rightarrow2c=a+b-3\Rightarrow3c=a+b+c-3\Rightarrow c=-\frac{5}{6}\)
Vậy \(a=\frac{1}{2},b=\frac{5}{6},c=-\frac{5}{6}\)
\(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{5}\Leftrightarrow\frac{3a+2b}{6}=\frac{a+b}{5}\\ \Rightarrow15a+10b=6a+6b\Rightarrow9a+4b=0\)
mà a,b là số tự nhiên nên \(a,b\ge0\)
nên \(9a+4b\ge0\)
dấu bằng xảy ra khi a=b=0
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{1}{a+b+c}\)\(=\frac{b+c+a+c+b+a+1+2-3}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{b+c+1}{a}=2\\\frac{a+c+2}{b}=2\\\frac{a+b-3}{c}=2\end{cases}\Rightarrow\hept{\begin{cases}b+c+1=2a\\a+c+2=2b\\a+b-3=2c\end{cases}}}\)
và \(\frac{1}{a+b+c}=2\Rightarrow\frac{1}{2}=a+b+c\)
\(\Rightarrow\hept{\begin{cases}a+b=\frac{1}{2}-c\\b+c=\frac{1}{2}-a\\c+a=\frac{1}{2}-b\end{cases}}\)
thay vào \(\hept{\begin{cases}b+c+1=a+1=2a\\a+c+2=b+2=2b\\a+b-3=c-3=2c\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=-3\end{cases}}\)
a/2 >hoặc = a/5 ( xảy ra giấu bằng với a=0)
b/3> hoặc = b/5 ( xảy randaaus bằng với a=0
Do đó : a/2 +b/3 = a/5 + b/5 chỉ trong trường hợp a=b=0
a)\(\left(x-\frac{1}{2}\right)^{2016},\left|\frac{3}{4}-y\right|\ge0\)
\(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^{2016}=0\\\left|\frac{3}{4}-y\right|=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=0\\\frac{3}{4}-y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}\)
b)\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)
\(\Rightarrow\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}=0\)
mk chưa hc tới bài này nên ko biết làm,thông cảm nha.Nhưng cho mk hỏi hậu tạ cái j z bạn
- TRỊNH THỊ THANH HUYỀN Hậu tạ nghĩa là trả ơn sau khi nhận được sự giúp đỡ.
1a
\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)
\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(A_{min}=\frac{161}{16}\)
1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)
\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2=\frac{1}{a+b+c}\)
Có: \(2=\frac{1}{a+b+c}\Rightarrow a+b+c=\frac{1}{2}\)
Xét \(\frac{b+c+1}{a}=2\Rightarrow b+c+1=2a\)
\(\Rightarrow a+b+c+1=3a\)
\(\Rightarrow\frac{1}{2}+1=3a\)
\(\Rightarrow3a=\frac{3}{2}\)
\(\Rightarrow a=\frac{1}{2}\)
Xét \(\frac{a+c+2}{b}=2\Rightarrow a+c+2=2b\)
\(\Rightarrow a+b+c+2=3b\)
\(\Rightarrow\frac{1}{2}+2=3b\)
\(\Rightarrow\frac{5}{2}=3b\)
\(\Rightarrow b=\frac{5}{6}\)
Xét \(\frac{a+b-3}{c}=2\Rightarrow a+b-3=2c\)
\(\Rightarrow a+b+c-3=3c\)
\(\Rightarrow\frac{1}{2}-3=3c\)
\(\Rightarrow\frac{-5}{2}=3c\)
\(\Rightarrow c=\frac{-5}{6}\)
Vậy bộ số \(\left(a;b;c\right)\) là \(\left(\frac{1}{2};\frac{5}{6};\frac{-5}{6}\right)\)
\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=2\)(T/C...)
\(\Rightarrow\frac{1}{a+b+c}=2\Rightarrow a+b+c=\frac{1}{2}=0,5\)
\(\Rightarrow\frac{b+c+1}{a}=2\Rightarrow\frac{0,5-a+1}{a}=2\Rightarrow1,5-a=2a\Rightarrow a=\frac{1}{2}\)
\(\Rightarrow\frac{a+c+2}{b}=2\Rightarrow\frac{0,5-b+2}{b}=2\Rightarrow2,5-b=2b\Rightarrow b=\frac{5}{6}\)
\(\Rightarrow c=0,5-\frac{1}{2}-\frac{5}{6}=-\frac{5}{6}\)