cho tam giác ABC cân tại A . Gọi M là điểm bất kỳ thuộc cạnh đáy BC . Từ M kẻ ME //AB ( E thuộc AC ) và MD // AC ( D thuộc AB )
a, chứng minh ADME là hình bình hành
b, chứng minh tam giác MEC cân và MD + ME = AC
c, xác định vị trí của M trên cạnh BC ADME là hình thoi
a) Xét tứ giác ADME có
AD//ME
DM//AE
Do đó: ADME là hình bình hành
b) Xét ΔEMC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)
nên ΔEMC cân tại E
Suy ra: EM=EC
Ta có: AE+EC=AC(E nằm giữa A và C)
mà AE=DM(AEMD là hình bình hành
mà EM=EC(cmt)
nên AC=MD+ME
cho mình hỏi ngu tí là ở câu b đó ạ,từ đâu mà suy ra được góc EMC = C(=B) ạ :((