K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

a) Ta có AE = AB + BE

AC = AD + DC

mà AB = AD (gt)

BE = DC (gt)

=> AE = AC

Xét 2 tam giác ABC và tam giác ADE có :

AB = AD (gt)

AE = AC (cmt)

A là góc chung

=> tam giác ABC = tam giác ADE (c-g-c)

b) Ta có : góc B1 + góc B2 = 180 độ

góc D1 + góc D2 = 180 độ

mà góc B1 = góc D1 (vì tam giác ABC = tam giác ADE)

=>góc B2 = góc D2

Xét 2 tam giác BOE và tam giác DOC có :

góc B2 = góc D2 (cmt)

góc E = góc C (vì tam giác ABC = tam giác ADE )

BE = DC (gt)

=> tam giác BOE = tam giác DOC (g-c-g)

c)Xét 2 tam giác ABO và tam giác ADO có:

AO là cạnh chung

AB = AD (gt)

BO = DO (vì tam giác BOE = tam giác DOC)

=>tam giác ABO = tam giác ADO (c-c-c)

=> góc A1 = góc A2 (2 góc tương ứng)

=> AO là tia phân giác của góc xAy

d) Xét 2 tam giác ABH và tam giác ADH có:

AH là cạnh chung

AB = AD (gt)

góc A1 = góc A2 (cm ở câu c)

=> tam giác ABH =tam giác ADH (c-g-c)

=> góc H1 = góc H2 (2 góc tương ứng)

mà góc H1 + góc H2 = 180 độ

=> góc H1 = góc H2 = 180/2= 90 độ

=> AH vuông góc với BD

Bạn vẽ x và y vào hình nhé, mình quên kí hiệu vào hình!

 

 

 

 

 

 

 

 

 

 

 

 

 

21 tháng 12 2016

A B E D C H O 1 2 1 2 1 2 1 2

20 tháng 4 2017

Ta có: AC=AD+DC

Hay AC= BA+BE

(do AD=AB, DE=BE)

Nên AC=AE.

∆ABC và ∆ ADE có:

AC=AE(chứng minh trên)

\(\widehat{A}\) chung

AB=AD(gt)

Vậy ∆ABC =∆ADE(c.g.c)


15 tháng 12 2016

a) Ta có:

AE=AB+BE

AC=AD+DC

mà AD=AB ; BE=DC

=>AE=AC

Xét tam giác ABC và tam giác ADE có:

AD=AB

A là góc chung

AE= AC

=> Tam giác ABC = tam giác ADE

b) Ta có 

Tam giác ABC = tam giâc ADE

=> Góc AED=góc ACB (2 góc tương ứng)

=>BC=DE ( 2 cạnh tương ứng)

c) Đến đây thì mình chịu. Sorry!

27 tháng 12 2015

tui ko bit vẽ kiểu j bạn xem đầu bài mà vẽ nhé còn bài làm:

Xét  tam giác ABC và tam giác ADE, có:

AB=AD (gt)

góc A là góc chung

AC=AE(vì AB=AD; BE=DC)

=> tam giác ABC = tam giác ADE (c.g.c)

tick nha 100% đúng vì mình đi ôn đội tuyển học sinh giỏi và cô hiệu trưởng trường mình từng giao bài này r.