Đề bài :
a. Tìm n để n2 + 2006 là một số chính phương.
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay hợp số.
LÀM ƠN GHI ĐẦY ĐỦ LỜI GIẢI GIÙM!
CẢM ƠN CÁC BẠN NHIỀU NHAAAAAAAA!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt n2 + 2006 = a2 (a thuộc Z)
=> 2006 = a2 - n2 = (a - n)(a + n) (1)
Mà (a + n) - (a - n) = 2n chia hết cho 2
=>a + n và a - n có cùng tính chẵn lẻ
+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)
+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)
Vậy không có n thỏa mãn n2+2006 là số chính phương
b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3
=> n = 3k + 1 hoặc n = 3k + 2 (k$$N*)
+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3
=> n2 + 2006 là hợp số
+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3
=> n2 + 2006 là hợp số
Vậy n2 + 2006 là hợp số
a) Giả sử n2
(a+n) = 2006 (*)
+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*)
+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n)2 và (a+n) 2 nên vế trái chia hết cho 4 và vế phải không chia
hết cho 4 nên không thỏa mãn (*)
Vậy không tồn tại n để n2
b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2
+ 2006 = 3m+2007= 3( m+669) chia hết cho 3.
Vậy n2
+ 2006 là hợp số.
+ 2006 là số chính phương khi đó ta đặt n2
+ 2006 là số chính phương.
Đã biết câu trả lời mà còn hỏi nữa con rảnh ruồi kia -__-
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm rồi dễ lắm bạn ạ
đùa tí bạn ấn vào dòng chữ xanh này nhé Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
do \(n^2+2006\)là scp nên \(n^2+2006\)có dạng \(m^2\)ta có
\(n^2+2006=m^2\)
\(\Leftrightarrow m^2-n^2=2006\)
\(\Leftrightarrow\left(m-n\right)\left(m+n\right)=2006\)
trường hợp này chỉ tìm n thôi ha.....\(\Rightarrow m-n;m+n\inƯ\left(2006\right)\)bn giải tiếp ha
b. do n là số ngto >3 nên n có dạng 3k+1 và 3k+2 .....thay vào n xong tính ta đc\(n^2+2006\)là hợp số ( cả 2 th)
Vì n là số nguyên tố lớn hơn 3 nên n không chia hết cho 3
hay n=3k+1 hoặc n=3k+2(k∈N)
Thay n=3k+1 vào \(n^2+2006\), ta được:
\(\left(3k+1\right)^2+2006=9k^2+6k+2007=3\left(3k^2+2k+669\right)⋮3\)(1)
Thay n=3k+2 vào \(n^2+2006\), ta được:
\(\left(3k+2\right)^2+2006=9k^2+6k+2010=3\left(3k^2+2k+670\right)⋮3\)(2)
Từ (1) và (2) suy ra \(n^2+2006\) là hợp số
sai rồi : a) Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( a( Z) ( a2 – n2 = 2006( (a-n) (a+n) = 2006 (*) (0,25 điểm).
+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*) ( 0,25 điểm).
+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n)2 và (a+n) 2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thỏa mãn (*) (0,25 điểm).
Vậy không tồn tại n để n2 + 2006 là số chính phương. (0,25 điểm).
b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2 chia hết cho 3 dư 1 do đó n2 + 2006 = 3m + 1 + 2006 = 3m+2007= 3( m+669) chia hết cho 3.
Vậy n2 + 2006 là hợp số.
Ta có: n là số nguyên tố lớn hơn 3
=>n không chia hết cho 3
TH1: n=3m+1 (m thuộc N)
=>n2=(3m+1)2=3m(3m+1)+(3m+1)=9m2+3m+3m+1=3(3m2+2m)+1
=>n2 chia 3 dư 1
TH2: n=3n+2 (k thuộc N)
=>n2=(3k+2)2=3k(3k+2)+2(3k+2)=9k2+6k+6k+4=3(3k2+4k+1)+1
=>n2 chia 3 dư 1
Vậy n2 luôn chia 3 dư 1 (với n là SNT >3)
=>n2=3x+1 (x thuộc N)
=>n2+2006=3x+1+2006=3x+2007=3(x+669) chia hết cho 3
Vậy n2+2006 là hợp số