Rút gọn:
\(\frac{1.4+2.5+3.6+4.7+...+99.102}{1.2+2.3+3.4+4.5+...+99.100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.4 + 2.5 + 3.6 + ..... + 99.102
= 1.(2 + 2) + 2.(3 + 2) + 3.(4 + 2) + ..... + 99.(100 + 2)
= 1.2 + 2 + 2.3 + 2.2 + 3.4 + 2.3 + .... + 99.100 + 2.99
= (1.2 + 2.3 + 3.4 + .... + 99.100) + (1.2 + 2.2 + 3.2 + .... + 2.99)
= 333300 + 2[(99.100)/2]
= 343200
\(B=1.4+2.5+3.6+...+99.102\)
\(=1.\left(2+2\right)+2.\left(2+3\right)+3.\left(2+4\right)+...+99.\left(2+100\right)\)
\(=1.2+2.1+2.3+2.2+3.4+2.3+...+99.100+2.99\)
\(=\left(1.2+2.3+...+99.100\right)+\left(2.1+2.2+2.3+...+2.99\right)\)
\(=333300+2.\left(1+2+3+...+99\right)\)
\(=333300+2.\left(\frac{99.100}{2}\right)\)
\(=333300+99.100=333300+9900=343200\)
kb với mình nha
B-A=1.(4-2)+2.(5-3)+...+99.(102-100)
B-A=2.(1+2+...+99)
B-A=\(\frac{\left(99+1\right).99}{2}\)
B-A=4950
B=333300+4950=338250
\(A=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3A=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+90.100\left(101-98\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(\Rightarrow3A=99.100.101\)
\(\Rightarrow A=\left(99.100.101\right):3\)
\(\Rightarrow A=333300\)
\(B=1.3+2.4+3.5+...+99.101\)
\(\Rightarrow B=1\left(2+1\right)+2\left(3+1\right)+3\left(4+1\right)+...+99\left(100+1\right)\)
\(\Rightarrow B=1.2+1+2.3+2+3.4+3+...+99.100+99\)
\(\Rightarrow B=\left(1.2+2.3+3.4+...+99.100\right)+\left(1+2+3+...+99\right)\)
\(\Rightarrow B=333300+4950\)
\(\Rightarrow B=338250\)
N = 1 - 2/2.3 + 1 - 2/3.4 +.....+ 1 - 2/99.100
= 98 - 2.(1/2.3 + 1/3.4 + ...... + 1/99.100)
= 98 - 2.(1/2-1/3+1/3-1/4+....+1/99-1/100)
= 98 - 2.(1/2-1/100)
= 98 - 2.49/100 = 98-49/50 < 98
Mà 49/50 < 1
=> N > 98-1 = 97
=> 97 < N < 98
Tk mk nha