1.Bạn Lan nghĩ ra 1 số tự nhiên có 3 chữ số sao cho số đó cộng với 6 thì chia hết cho 7, cộng với 7 thì chia hết cho 8 , cộng với 8 thì chia hết cho 9 .Tìm số đó
2. Tìm số tự nhiên có 3 chữ số sao cho chia nó cho 15 dư 8 chia cho 35 dư 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là A
vì số đó cộng 2 chia hết cho 5 nên số đó chia 5 dư 3
vì số đó cộng 4 chia hết cho 7 nên số đó chia 7 dư3
=>A:4;5;7 đều dư 3
=>A-3 chia hết cho 4;5;7
mà số nhỏ nhất có 3 chữ số chia hết cho 4;5;7 là 140
Thử lại 143 :4=35(dư3)
143:5=28(dư3)
143:7=20(dư 3)
(thỏa mãn đầu bài)
Vậy số cần tìm là 143
:)))^^^^
Gọi số Lan cần tìm là \(\overline{abcdeghik}\left(a,b,c,d,e,g,h,i,k< 10;a\ne0\right)\)
Theo đề bài, \(\overline{abcdeghik}\) là số nhỏ nhất nên các chữ số \(a,b,c,d,e,g,h,i,k\) cũng phải có giá trị nhỏ nhất thỏa mãn điều kiện của đề bài.
Vậy ta có: \(\overline{ab}\) chia hết cho \(2\), nên \(\overline{ab}=10\); \(\overline{10c}\) chia hết cho \(3\), nên \(c=2\). Ta có số có 3 chữ số là \(102;\overline{102d}\) chia hết cho \(4\), nên \(d=0\).
Ta có số có 4 chữ số là \(1020;\overline{1020e}\) chia hết cho \(5\), nên \(e=0\). Ta có số có 5 chữ số là \(10200;\overline{10200g}\) chia hết cho \(6\), nên \(g=0\).
Ta có số có 6 chữ số là \(102000;\overline{102000h}\) chia hết cho \(7\), nên \(h=5\). Ta có số có 7 chữ số là \(1020005;\overline{1020005i}\) chia hết cho \(8\), nên \(i=6\). Ta có số có 8 chữ số là \(10200056;\overline{10200056k}\) chia hết cho \(9\), nên \(k=4\). Ta có số có 9 chữ số là \(102000564\)
\(\Rightarrow\) số mà Lan nghĩ là: \(102000564\).
2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d
=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d
=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d 1
chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680