K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

Híc híc mình trả lời rồi mà nó đi đâu mất rồi!

30 tháng 12 2016

Thôi trả lời lại vậy;

Bài 1:

a)

* A = 21 + 22 + 23 + ... + 22010

A = (21 + 22) +(23 + 24) + ... + (22009 + 22010)

A = 21. (1 + 2) + 23. (1 + 2) + ... + 22009. ( 1 + 2)

A = 21. 3 + 23. 3 + ... + 22009. 3

A = 3. (21 + 23 + ... + 22009)

Vì 3 \(⋮\)3 nên 3. (21 + 23 + ... + 22009) \(⋮\)3

=> A \(⋮\)3

Vậy A \(⋮\)3.

* A = 21 + 22 + 23 + ... + 22010

A = (21 + 22 + 23) + (24 + 25 + 26) + ... (22008 + 22009 + 22010)

A = 21. (1 + 2 + 22) + 24. (1 + 2 + 22) + ... + 22008. ( 1 + 2 + 22)

A = 21. 7 + 24. 7 + ... + 22008. 7

A = 7. (21 + 24 + ... + 22008)

Vì 7 \(⋮\)7 nên 7. (21 + 24 + ... + 22008) \(⋮\)7

=> A \(⋮\)7

Vậy A \(⋮\)7

b) B = 31 + 32 + 33 + ... + 32010

B = (31 + 32) + ( 33 + 34) + ... + ( 32009 + 32010)

B = 31. (1+ 3) + 33. (1 + 3) + ... + 32009. ( 1 + 3)

B = 31. 4 + 33.4 + ... + 32009.4

B = 4. (31 + 33 + ... + 32009)

Vì 4 \(⋮\)4 nên 4. (31 + 33 + ... + 32009) \(⋮\)4

=> B \(⋮\)4

Vậy B \(⋮\)4

...... Mấy phần còn lại bạn làm tương tự nhé!

Còn bài 2 để mình làm sau tại vì mình mỏi tay quá!

Chúc bạn học tốt!

4 tháng 12 2014

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

10 tháng 12 2014

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

22 tháng 12 2015

Minh lam cau A) thoi duoc hong

1)

a)     A = 21 + 22 + … + 22010

    = (21 + 22) + (23 + 24) + … + (22009 + 22010)

    = 2(1 + 2) + 23(1 + 2) + … + 22009(1 + 2)

    = 2.3 + 23.3 + … + 22009.3

Vì 3 chia hết cho 3 nên A chia hết cho 3.

  A = 21 + 22 + … + 22010

     = (21 + 22 + 23) + (24 + 25 + 26) + … + (22008 + 22009 + 22010)

     = 2(1 + 2 + 22) + 24(1 + 2 + 22) + … + 22008(1 + 2 + 22)

     = 2.7 + 24.7 + … + 22008.7

Vì 7 chia hết cho 7 nên A chia hết cho 7.

b)   B = 31 + 32 + … + 32010

          = (31 + 32 )+ (33 + 34) + (35 + 36) + … + (32009 + 32010)

          = 3(1 + 3) + 33(1 + 3) + … + 32009(1 + 3)

          = 3.4+ 33.4 + … + 32009.4

Vì 4 chia hết cho 4 nên B chia hết cho 4.

B = 31 + 32 + … + 32010

    = (31 + 32 + 33) + (34 + 35 + 36) + … + (32008 + 32009 + 32010)

    = 3(1 + 3 + 32) + 34(1 + 3 + 32) + … + 32008(1 + 3 + 32)

    = 3.13 + 34.13 + … + 32008.13

Vì 13 chia hết cho 13 nên B chia hết cho 13.

c)     C = 51 + 52 + … + 52010

           = (51 + 52 +53 + 54) + … + (52007 + 52008 + 52009 + 52010)

           = 5(1 + 5 + 52 + 53) + … + 52007(1 + 5 + 52 + 53)

           = 5.156 + … + 52007.156

Vì 156 chia hết cho 6, 12 nên C chia hết cho 6 và 12.

2) 

a)     Ta có: A = 20 + 21 + 22 + … + 22010 = 22011 – 1

     Vậy A = B ( vì đều bằng 22011 – 1 )

b)    Ta có: A =  2009.2011 = 2009.(2010 + 1) = 2009.2010 + 2009

           B =  20102 = 2010.2010 = (2009 + 1).2010 = 2009.2010 + 2010

Vì ở A và B đều có 2009.2010 mà 2009 < 2010 nên A < B.

c)     Ta có: A = 1030 = 103.10 = (103)10 = 10010

            B = 2100 = 210.10 = (210)10  = 102410

Vì 10010 < 102410 nên A < B.

d)    Ta có: A = 333444 = 3334.111 = (3334)111

                B = 444333 = 4443.111 = (4443)111

Ta so sánh 3334 và 4443

3334 = (3.111)4 = 34.1114 = 81.111.1113

4443 = (4.111)3 = 43.1113 = 64.1113

Vì 81.111 > 64 => 3334 > 4443 => (3334)111 > (4443)111 => A > B.

2)a)     Ta có: A = 20 + 21 + 22 + … + 22010 = 22011 – 1

     Vậy A = B ( vì đều bằng 22011 – 1 )

b)    Ta có: A =  2009.2011 = 2009.(2010 + 1) = 2009.2010 + 2009

           B =  20102 = 2010.2010 = (2009 + 1).2010 = 2009.2010 + 2010

Vì ở A và B đều có 2009.2010 mà 2009 < 2010 nên A < B.

c)     Ta có: A = 1030 = 103.10 = (103)10 = 10010

            B = 2100 = 210.10 = (210)10  = 102410

Vì 10010 < 102410 nên A < B.

d)    Ta có: A = 333444 = 3334.111 = (3334)111

                B = 444333 = 4443.111 = (4443)111

Ta so sánh 3334 và 4443

3334 = (3.111)4 = 34.1114 = 81.111.1113

4443 = (4.111)3 = 43.1113 = 64.1113

Vì 81.111 > 64 => 3334 > 4443 => (3334)111 > (4443)111 => A > B.

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

25 tháng 7 2017

1. Ta có: A = 2^1+ 2^2 +2^3+2^4+....2^10

A= ( 2^1 + 2^2) + ( 2^3+2^4) +....( 2^9+ 2^10)

A= 3.( 2^1+2^3+2^5+...+2^1005)

Do 3 \(⋮\)3 => A\(⋮\)3

Ta có: A =.....

A= Ghép 3 số lại

A= 7. (2^1+ 2^4+...+2^670)

Do 7 \(⋮\)7 => A \(⋮\)7

2;3;4 đều ghép 2 hoặc 3 số như tke và phần trog ngoặc cx y hệt như tke, ko thay đổi

Duyệt nhanh....

4 tháng 2 2016

+)A=2^1+2^2+2^3+2^4+...+2^2010

=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)

=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)

=>A=6+2^2.6+2^4.6+...+2^2008.6

=>A=6.(1+2^2+2^4+...+2^2008)

=>A=3.2.(1+2^2+2^4+...+2^2008)

=>A chia hết cho 3

A=2+2^2+2^3+2^4+...+2^2010

A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)

A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)

A=2.7+2^4.7+2^7.7+...+2^2008.7

A=7.(2+2^4+2^7+...+2^2008)

=> A chia hết cho 7

các phần khác làm tương tự

4 tháng 2 2016

A = 21 + 22 + 23 + 2+ .... + 22009 + 22010

=> A = ( 2+ 22 ) + ( 23 + 2) + .... + ( 22009 + 22010 )

=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )

=> A = 21.3 + 23.3 + .... + 22009.3

=> A = 3.( 21 + 23 + .... + 22009 )

Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )

A = 21 + 22 + 2+ 24 + 2+ 26 + .... + 22007 + 22008 + 22009

=> A = ( 21 + 22 + 23 ) + ( 24 + 2+ 26 ) + .... + ( 22007 + 22008 + 22009 )

=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )

=> A = 21.7 + 24.7 + .... + 22007.7

=> A = 7.( 21 + 24 + .... + 22007 )

Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )

Các ý sau tương tự .

2 tháng 12 2015

 ( 2+ 2) + ( 2+ 2) + ... + ( 22009 + 22010 )

= 2. ( 1 + 2 ) + 2. ( 1 + 2 ) + ... + 22009 . ( 1 + 2 )

= 3 . ( 2 + 2+ ... + 22009 ) chia hết cho 3. => ĐPCM