K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

\(C=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) \(\left(1\right)\)

Đặt \(x^2+8x+11=t\) , khi đó

\(\left(1\right)\Leftrightarrow\left(t-4\right)\left(t+4\right)+15\)

\(=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\\ =\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)

10 tháng 12 2016

\(C=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(t=x^2+8x+7\) thì C trở thành:

\(t\left(t+8\right)+15=t^2+8t+15\)

\(t^2+3t+5t+15=t\left(t+3\right)+5\left(t+3\right)\)

\(=\left(t+5\right)\left(t+3\right)=\left(x^2+8x+7+5\right)\left(x^2+8x+7+3\right)\)

\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)

29 tháng 8 2021

c) \(16-x^2+2xy-y^2=\left(4-x+y\right)\left(4+x-y\right)\)

d) \(\left(x-1\right)^2-4\left(2x-3\right)^2=\left(5-3x\right)\left(5x-7\right)\)

e) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)

e) \(x^2-7=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)

31 tháng 12 2021

=(x-6)(x+1)

31 tháng 12 2021

Tính ra hết giúp mik đc ko bạn

11 tháng 6 2023

`(x+y)^2-4(x+y)`

`=(x+y)(x+y-4)`

 

11 tháng 6 2023

 

 

13 tháng 11 2016

\(=\left(x^2+8x+15\right)\left(x^2+8x+7\right)+15\)

đặt:\(^{x^2+8x+11=t}\)

ta co \(\left(t+4\right)\left(t-4\right)+15=t^2-16+15=t^2-1\)

\(=\left(t-1\right)\left(t+1\right)\Rightarrow\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)\)

\(\Rightarrow\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

tìm có mà link https://h7.net/hoi-dap/toan-8/phan-h-da-thuc-x-1-x-3-x-5-x-7-15-thanh-nhan-tu-faq257547.html

tí mình gửi qua cho 

học tốt

10 tháng 9 2019

\(B=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)(1)

Đặt \(x^2+8x+11=t\)thay vào (1) ta được : 

\(\left(t-4\right)\left(t+4\right)+15\)

\(=t^2-16+15\)

\(=t^2-1\)

\(=\left(t-1\right)\left(t+1\right)\)Thay \(t=x^2+8x+11\)vào bt ta được:

\(\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)\)

\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right)\left(x^2+2x+6x+12\right)\)

\(=\left(x^2+8x+10\right)\left[x\left(x+2\right)+6\left(x+2\right)\right]\)

\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)

5 tháng 9 2016

Đặt \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

Ta có : \(A=\left[\left(x+1\right)\left(x+7\right)\right].\left[\left(x+3\right)\left(x+5\right)\right]+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(t=x^2+8x+11\) , suy ra \(A=\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)

\(\Rightarrow A=\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)

5 tháng 9 2016

f(x) = (x+1)(x+3)(x+5)(x+7)+15

        = (x+1)(x+7)(x+3)(x+5)+15

        = (x2+7x+x+7)(x2+5x+3x+15)+15

        = (x2+8x+7)(x2+8x+15)+15

        Đặt X=x2+8x+11

   f(x) = (X-4)(X+4)+15

         = X2-16+15

         = X2-12

         = (X-1)(X+1)

=> f(x)= (x2+8x+11-1)(x2+8x+11+1)

     f(x) = (x2+8x+10)(x2+8x+12)

Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:

     f(x) = (x2+8x+10)(x2+8x+12)

           = (x2+8x+10)[(x2+2x)+(6x+12)]

           = (x2+8x+10)[x(x+2)+6(x+2)]

           = (x+2)(x+6)(x2+8x+10)

5 tháng 9 2016

  f(x) = (x+1)(x+3)(x+5)(x+7)+15

        = (x+1)(x+7)(x+3)(x+5)+15

        = (x2+7x+x+7)(x2+5x+3x+15)+15

        = (x2+8x+7)(x2+8x+15)+15

        Đặt X=x2+8x+11

   f(x) = (X-4)(X+4)+15

         = X2-16+15

         = X2-12

         = (X-1)(X+1)

=> f(x)= (x2+8x+11-1)(x2+8x+11+1)

     f(x) = (x2+8x+10)(x2+8x+12)

Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:

     f(x) = (x2+8x+10)(x2+8x+12)

           = (x2+8x+10)[(x2+2x)+(6x+12)]

           = (x2+8x+10)[x(x+2)+6(x+2)]

           = (x+2)(x+6)(x2+8x+10)

     

5 tháng 9 2016

A=(x+1)(x+3)(x+5)(x+7)+15=[(x+1)(x+7)][(x+3)(x+5)]+15=(x2+8x+7)(x2+8X+15)+15

Đặt t=x2+8x+7=> A=t2+8t+15=(t+4)2-1=(t+5)(t+3)=(x2+8x+12)(X2+8x+10)=(x+2)(x+6)(x2+8x+10)

vậy...........................................

a)x^5+x+1

=x5-x2+x2+x+1

=x2(x3-1)+x2+x+1

=x2(x+1)(x2+x+1)+x2+x+1

=(x2+x+1)(x3+x2+1)

b)(x+1)(x+3)(x+5)(x+7)+15

=(x2+8x+7)(x2+8x+15)+15

Đặt x2+8x+7=t

=> t(t+8)+15=t2+8t+15

=(t+3)(t+5)

=(x2+8x+10)(x2+8x+12)