4x + 4x+2 = 272
Giúp em gấp với ạ!!!! Giải chi tiết giúp em luôn nhaaaaaaa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,4x\left(1-x\right)-8=1-\left(4x^2+3\right)\\ \Leftrightarrow4x-4x^2-8=1-4x^2-3\\ \Leftrightarrow4x-4x^2-8-1+4x^2+3=0\\ \Leftrightarrow4x-6=0\\ \Leftrightarrow x=\dfrac{3}{2}\)
\(2,\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\\ \Leftrightarrow\left(2-3x\right)\left(x+11\right)-\left(2-3x\right)\left(5x-2\right)=0\\ \Leftrightarrow\left(2-3x\right)\left(x+11-5x+2\right)=0\\ \Leftrightarrow\left(2-3x\right)\left(-4x+13\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)
\(P=\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\) với \(\dfrac{1}{4}< x< \dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{2}P=\sqrt{4x+2\sqrt{4x-1}}+\sqrt{4x-2\sqrt{4x-1}}\)
\(=\sqrt{\left(\sqrt{4x-1}\right)^2+2\sqrt{4x-1}+1}+\sqrt{\left(\sqrt{4x-1}\right)^2-2\sqrt{4x-1}+1}\)
\(=\sqrt{4x-1}+1+\left|\sqrt{4x-1}-1\right|\)
Do \(\dfrac{1}{4}< x< \dfrac{1}{2}\Leftrightarrow0< \sqrt{4x-1}< 1\)
\(\Rightarrow P=\dfrac{1}{\sqrt{2}}\left(\sqrt{4x-1}+1+1-\sqrt{4x-1}\right)=\sqrt{2}\)
Vậy \(P=\sqrt{2}\).
Ta có :
\(4x^2+12x+10>0\)
\(\Leftrightarrow\)\(\left(4x^2+12x+9\right)+1>0\)
\(\Leftrightarrow\)\(\left[\left(2x\right)^2+2.2x.3+3^2\right]+1>0\)
\(\Leftrightarrow\)\(\left(2x+3\right)^2+1\ge1>0\)
Vậy \(4x^2+12x+10\) luôn dương với mọi giá trị x
Chúc bạn học tốt ~
\(\left|x+1\right|-4x=0\\ \Leftrightarrow\left|x+1\right|=4x\)
Ta có : \(\left\{{}\begin{matrix}x+1\ge0\Leftrightarrow x\ge-1\\x+1< 0\Leftrightarrow x< -1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=4x\\\left(-x+1\right)=4x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-4x=-1\\-x-1=4x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x=-1\\-x-4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(tm\right)\\x=-\dfrac{1}{5}\left(tm\right)\end{matrix}\right.\)
`@ Kidd`
\(x=\left(\dfrac{1}{2}\right)^3:\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^{3-1}=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
\(1,\Leftrightarrow x^2-8x+16-x^2+x+12=7\\ \Leftrightarrow-7x=-21\\ \Leftrightarrow x=3\\ 2,\Leftrightarrow\left(x-4\right)^2-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
4x + 4x+2 = 272
<=> 4x + 4x.42 = 272
<=> 4x ( 1 + 42 ) = 272
<=> 4x = 16
<=> x = 2
\(4^x+4^{x+2}=272\)
\(\Rightarrow4^x+4^x.4^2=272\)
\(\Rightarrow4^x\left(1+4^2\right)=272\)
\(\Rightarrow4^x=\frac{272}{17}=16\)
\(\Rightarrow4^x=16=4^2\)
\(\Rightarrow x=2\)
Vậy: \(x=2\)