Cho hình thang ABCD có đáy nhỏ AB,Gọi I,N là trung điểm của các đường chéo .Biết độ dài đường trung bình là 5.Tính độ dài NI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ dàng chứng minh được N,I cùng nằm trên đường trung bình của hình thang (Có thể chứng minh theo tiên đề Ơ-clit)
Khi đó ta có \(NP=IQ=\frac{1}{2}AB=\frac{3}{2}\left(cm\right)\)
NI = PQ - 2NP = 5-3 = 2 (cm)
Chỉ làm r: Câu hỏi của ༺ ๖ۣۜPhạm ✌Tuấn ✌Kiệτ ༻ - Toán lớp 8 | Học trực tuyến
Vì đường trung bình của hình thang=5cm nên ta gọi E là trung điểm của BC
Vì ABCD là hình thang
=> AB//CD
Xét tam giác ABC có: E là trung điểm của BC( cách vẽ)
N là trung điểm của AC(gt)
=>NE là đường trung bình của tg ABC
=>NE//BC; \(NE=\frac{1}{2}BC\)
Xét tam giác BDC có: I là trung điểm của BD(gt)
E là trung điểm của BC(cách vẽ)
=>IE là đường trung bình của tg BDC
=>IE//CD;\(IE=\frac{1}{2}BC\)
Vì IE//CD (cmt)
AB//CD(cmt)
=>IE//AB,mà NE//AB(cmt)
=>3 điểm I,N,E thẳng hàng (tiên đề Ơ-clit)
=>IN+NE=IE
=>IN=IE-NE
=>\(IN=\frac{1}{2}CD-\frac{1}{2}AB=\frac{1}{2}\left(CD-AB\right)\)
Gọi K là trung điểm của AD (KE là đường trung bình,E là trung điểm của BC)
=>\(KE=\frac{1}{2}\left(AB+CD\right)=>2KE=AB+CD=>CD=2KE-AB=2.5-3=7\left(cm\right)\)
=>\(IN=\frac{1}{2}\left(CD-AB\right)=\frac{1}{2}\left(7-3\right)=\frac{1}{2}.4=2\left(cm\right)\)
Gọi EF là đường trung bình của hình thang ABCD.
Khi đó:
E là trung điểm của AD
F là trung điểm của BC
EF = 5 (cm)
Tam giác ABD có:
E là trung điểm của AD
N là trung điểm của BD
=> EN là đường trung bình của tam giác ACD
\(\Rightarrow EN=\frac{AB}{2}=\frac{3}{2}=1,5\left(cm\right)\)
Tam giác ABC có:
F là trung điểm của BC
I là trung điểm của AC
=> FI là đường trung bình của tam giác ABC
\(\Rightarrow FI=\frac{AB}{2}=\frac{3}{2}=1,5\)
\(NI=FE-EN-FI=5-1,5-1,5=2\left(cm\right)\)
thế là pa cũng đúng. Pa ngại suy nghĩ rồi điền luôn là 2cm
b: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔBAD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra NP//MQ và NP=MQ
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC
mà AC\(\perp\)BD
nên QP\(\perp\)BD
mà MQ//BD
nên MQ\(\perp\)QP
hay \(\widehat{MQP}=90^0\)
Xét tứ giác MQPN có
MQ//NP
MQ=NP
Do đó: MQPN là hình bình hành
mà \(\widehat{MQP}=90^0\)
nên MQPN là hình chữ nhật
Xét tứ giác MQPN có
\(\widehat{MQP}+\widehat{MNP}=180^0\)
Do đó: MQPN là tứ giác nội tiếp
hay M,Q,P,N cùng thuộc 1 đường tròn