Cho S = 1+2+22+...+22014 và P = 22015. Hãy so sánh S và P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)
\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)
\(2^{x+1}\cdot2^{2014}=2^{2015}\\ 2^{x+1}=2^{2015}:2^{2014}\\ 2^{x+1}=2\\ =>x+1=1\\ x=1-1\\ x=0\)
ta có;1/11>1/20
1/12>1/20
1/13>1/20
................
1/19>.1/20
cộng vế với vế của 1 và 2 ta đc
1/11+1/12+1/13+...+1/19>1/20+1/20+1/20+...+1/20
1/11+1/12+1/13+...+1/19+1/20>1/20+1/20+1/20+...+1/20+1/20[cộng cả 2 vế vs 1/20]
suy ra S>10/20
DO DÓ S>1/2
100% là đúng
ta thấy \(\frac{1}{20}\)<\(\frac{1}{3}\)
thì \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{20}\)+...+\(\frac{1}{20}\)<\(\frac{1}{3}\)
vậy \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{3}\)
S = 1 + 2 + 22 + ... + 22014
=> 2S = 2 + 22 + 23 + ... + 22015
=> 2S - S = ( 2 + 22 + 23 + ... + 22015 ) - ( 1 + 2 + 22 + ... + 22014 )
=> S = 22015 - 1
Ta có : 22015 - 1 < 22015 => S < P
Vậy : S < P
Trần Quỳnh Mai đúng ý