Phân tích đa thức thành nhân tử :
a . \(x^3-7x-6\)
b . \(x^3-19x-30\)
c . \(a^3-6a^2+11a-6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^3-x^2-14x+24=x^3-3x^2+2x^2-6x-8x+24\)
\(=x^2\left(x-3\right)+2x\left(x-3\right)-8\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+2x-8\right)\)
=\(\left(x-3\right)\left(x^2+4x-2x-8\right)=\left(x-3\right)\left(x-2\right)\left(x+4\right)\)
b)Tương tự câu a
c)\(x^3-7x+6=x^3-x^2+x^2-x-6x+6\)
=\(x^2\left(x-1\right)+x\left(x-1\right)-6\left(x+1\right)=\left(x+1\right)\left(x^2+x-6\right)\)
=\(\left(x+1\right)\left(x^2+3x-2x-6\right)\)
=\(\left(x+1\right)\left(x-2\right)\left(x+3\right)\)
d;e thương tự câu c
Vì mình mới họ định lí mới nên minhfm uốn làm thử nếu cậu không hiểu tì hỏi mình để mình làm cách bình thường .
a ) Áp dụng định lí Bezout :
Đặt \(f\left(x\right)=x^3-7x-6,\) ta thấy \(f\left(-1\right)=0\) nên \(-1\) là một ước của \(f\left(x\right)\).
Vậy \(f\left(x\right)\) chia hết cho \(\left(x+1\right)\). Ta có : \(f\left(x\right)=\left(x+1\right)\left(x^2-x-6\right)\)
\(x^2-x-6=\left(x+2\right)\left(x-3\right)\).
Kết quả \(f\left(x\right)=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)
b ) Áp dụng định lí Bezout :
Đặt \(f\left(x\right)=x^3-19x-30.\)Xét một số ước của 30 , ta được \(f\left(-2\right)=0\).
Ta chia \(f\left(x\right)\) cho \(\left(x+2\right);f\left(x\right)=\left(x+2\right)\left(x^2-2x-15\right)\)
\(x^2-2x-15\) nhận \(x=5\) làm nghiệm .
Do vậy \(f\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)
Chúc bạn học tốt
a) \(x^3-7x-6\)
\(=\left(x^3+2x^2\right)-\left(2x^2+4x\right)-\left(3x+6\right)\)
\(=\left(x+2\right)\left(x^2-2x-3\right)\)
\(=\left(x+2\right)\left(x-3\right)\left(x+1\right)\)
b)\(x^3-19x-30\)
\(=\left(x^3-5x^2\right)+\left(5x^2-25x\right)+\left(6x-30\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)
c) \(a^3-6a^2+11a-6\)
\(=\left(a^3-a^2\right)-\left(5a^2-5a\right)+\left(6a-6\right)\)
\(=\left(a-1\right)\left(a^2-5a+6\right)\)
\(=\left(a-1\right)\left(a-2\right)\left(a-3\right)\)
a) a4 + a2 - 2
a4 + 2a2 - a2 - 2
a2.( a2 + 2 ) - ( a2 + 2 )
( a2 - 1 ).( a2 + 2 )
( a + 1 ).( a - 1 ).( a2 +2 )
b) x4 + 4x2 - 5
x4 + 5x2 - x2 - 5
x2.( x2 + 5 ) - ( x2 + 5 )
( x2 - 1 ).( x2 + 5 )
( x + 1 ).( x - 1 ).( x2 + 5 )
c) x3 - 19x - 30
x3 + 2x2 - 2x2 + 4x - 15x - 30
x2( x + 2 ) - 2x.( x + 2 ) - 15.( x + 2 )
( x + 2 ).( x2 - 2x - 15 )
d) x3 - 7x - 6
x3 - 3x2 + 3x2 - 9x + 2x - 6
x2.( x - 3 ) + 3x.( x - 3 ) + 2.( x - 3 )
( x - 3 ).( x2 + 3x +2 )
( x - 3 ).( x2 + 2x + x + 2 )
( x - 3 ).( x.( x + 2 ) + ( x + 2 )
( x + 1 ).( x + 2 ).( x - 3 )
e) x3 - 5x2 - 14x
x3 - 7x2 + 2x2 - 14x
x2.( x - 7 ) + 2x.( x - 7 )
( x - 7 ).( x2 + 2x )
x.( x + 2 ).( x - 7 )
\(x^2-x-6=x^2+2x-3x-6=x\left(x+2\right)-3\left(x+2\right)=\left(x-3\right)\left(x+2\right)\)
\(x^3-19x-30=x^3+6x-25x-30=x\left(x^2-25\right)+6x-30=x\left(x^2-25\right)+6\left(x-5\right)\)
\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)=\left(x-5\right)\left[\left(x\right)\left(x+5\right)+6\right]\)
\(x^3-5x^2-14x\)
\(=x^3+2x^2-7x^2-14x\)
\(=x^2\left(x+2\right)-7x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-7x\right)\)
\(=x\left(x+2\right)\left(x-7\right)\)
\(x^3-7x-6\)
\(=x^3+x^2-x^2-x-6x-6\)
\(=x^2\left(x+1\right)-x\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
\(=\left(x+1\right)\left(x^2+2x-3x-6\right)\)
\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)
\(x^3-19x-30\)
\(=x^3-5x^2+5x^2-25x+6x-30\)
\(=x^2\left(x-5\right)+5x\left(x-5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+3\right)\left(x+2\right)\)
a) \(x^2-x-2=x^2+x-2x-2=x\left(x+1\right)-2\left(x+1\right)\)
\(=\left(x+1\right)\left(x-2\right)\)
a) \(x^2-x-2=x^2-2x+x-2=x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x+1\right)\)
b) \(x^3-19x-30==x^3+2x^2-2x^2-4x-15x-30=x^2\left(x+2\right)-2x\left(x+2\right)-15\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+2x-15\right)=\left(x+2\right)\left(x-3\right)\left(x+5\right)\)
c) \(x^3-6x^2+11x-6=x^3-x^2-5x^2+5x+6x-6=x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
a) x3 - 7x - 6 = x3 + x2 - x2 - x - 6x - 6
= x2(x + 1) - x(x + 1) - 6(x + 1)
= (x + 1)(x2 - x - 6)
= (x + 1)(x2 + 2x - 3x - 6)
= (x + 1)[x(x + 2) - 3(x + 2)]
= (x + 1)(x + 2)(x - 3)
a) = x2 - 3x + 2x - 6
= x(x -3) + 2(x - 3)
= (x - 3)(x + 2)
b) = x2 - x + 5x - 5
= x(x - 1) + 5(x - 1)
= (x - 1)(x + 5)
c) = x3 - 5x2 + 5x2 - 25x + 6x - 30
= x2(x - 5) + 5x(x - 5) +6(x - 5)
= (x - 5)(x2 + 5x + 6)
= (x - 5)(x2 + 2x + 3x + 6)
= (x - 5)[x(x + 2) + 3(x + 2)]
= (x - 5)(x + 2)(x + 3)
a) = x2 - 3x + 2x - 6
= x(x -3) + 2(x - 3)
= (x - 3)(x + 2)
b) = x2 - x + 5x - 5
= x(x - 1) + 5(x - 1)
= (x - 1)(x + 5)
c) = x3 - 5x2 + 5x2 - 25x + 6x - 30
= x2(x - 5) + 5x(x - 5) +6(x - 5)
= (x - 5)(x2 + 5x + 6)
= (x - 5)(x2 + 2x + 3x + 6)
= (x - 5)[x(x + 2) + 3(x + 2)]
= (x - 5)(x + 2)(x + 3)
a ) \(x^3-7x-6=x^3-x-6x-6=x^3-x-6\left(x+1\right)\)
\(=x\left(x^2-1\right)-6\left(x+1\right)=\left(x+1\right)\left[x\left(x-1\right)-6\right]\)
\(=\left(x+1\right)\left[\left(x^2-x-6\right)\right]=\left(x+1\right)\left[\left(x^2+2x-3x-6\right)\right]\)
\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b )
\(x^3-19x-30=\left(x^3-9x\right)-\left(10x+30\right)=x\left(x^2-9\right)-10\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x-10\right)=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)
c )
\(a^3-6a^2+11a-6=\left(a-3\right)\left(a-2\right)\left(a-1\right).\)