1. Cho tam giác ABC vuông tại A, phân giác BD. Gọi M,N,E lần lượt là trung điểm của BD, BC và DC.
a. C/m: MNED là hình bình hành
b. C/m: AMNE là hình thang cân
c. Tìm điều kiện của tam gáic ABC để MNED là hình thoi
2. Cho hình thang cân ABCD (AB//CD) có góc D=45 độ. Vẽ AH vuông góc với CD tại H. Lấy điểm E đối xứng với D qua H
a. C/m: ABCE là hình bình hành
b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. C/m: H là trung điểm của AF
c. AEFD là hình gì ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a) VÌ MN là đường trung bình của tam giác BDC nên MN//DC hay MN//DE (1)
EN là đường trung bình của tam giác BDC nên EN//DB hay EN//DM (2)
Từ (1) và (2) suy ra MNED là hình bình hành (các cạnh đối song song)
b) Do MNED là hình bình hành nên MN//DE hay MN//AE nên AMNE là hình thang (3)
ABD là tam giác vuông có AM là đường trung tuyến thuộc cạnh huyền
nên AM=MB=MD nên tam giác MAD cân tại M => ^MAD=^MDA
mà ^MAD=^NEA (đồng vị) => ^MAE=^NEA (4)
Từ (3), (4) suy ra AMNE là hình thang cân (hình thang có hai góc kề đáy bằng nhau)
c) Hình bình hành MNED là hình thoi khi MN=ED mà MN = DC/2; NE=BD/2 (t/c đường trung bình tam giác) nên MN=ED <=> DC=BD
tức là tam giác BDC cân tại D => ^DBC=^DCB
mà BD là phân giác nên ABC=2BCA. Do ^B+^C=90 độ
suy ra ^B = 60 độ
Vậy tam giác vuông ABC có thêm điều kiện là góc B bằng 60 độ thì MNED là hình thoi.
MNED là hình thoi khi MN = MD
=> 1/2 DC = 1/2 BD
=> DC = BD
nên suy ra tam giác BDC cân tại D
=> ^OBC = ^BCD =^BCA
=> ^DBC = ^ACB
=>1/2 ^ABC = ^ACB
=> ^ABC = 2 ^ACB
Vậy điều kiện của MNED là thoi thì tam giác ABC phải có ^ABC = 2 ^ACB
Tự vẽ hình nha!
a)Ta có: Tam giác BCD có BM=MD( giả thiết đã cho)
=> MN là đường trung bình =MN//DC=MN//DE
Mà MN=1/2DC
<=> MN=DE
Vậy MNED là hình bình hành
b) Ta thấy: MNED là hình bình hành =MD//NE=DEN
=> Tam giác ABD vuông tại A thì có BM=DM=>AM là đường trung tuyến
=>AM=1/2BD=MD
-Tam giác ADM cân tại M =>MDA=DAM
=>DEN=MAD
<=> MN//DE=>MN//AE=>AMNE (hình thang)
Vậy AMNE là hình thang cân
a) VÌ MN là đường trung bình của tam giác BDC nên MN//DC hay MN//DE (1)
EN là đường trung bình của tam giác BDC nên EN//DB hay EN//DM (2)
Từ (1) và (2) suy ra MNED là hình bình hành (các cạnh đối song song)
b) Do MNED là hình bình hành nên MN//DE hay MN//AE nên AMNE là hình thang (3)
ABD là tam giác vuông có AM là đường trung tuyến thuộc cạnh huyền
nên AM=MB=MD nê tam giác MAD cân tại M => ^MAD=^MDA
mà ^MAD=^NEA (đồng vị) => ^MAE=^NEA (4)
Từ (3), (4) suy ra AMNE là hình thang cân (hình thang có hai góc kề đáy bằng nhau)
c) Hình bình hành MNED là hình thoi khi MN=ED mà MN = DC/2; NE=BD/2 (t/c đường trung bình tam giác) nên MN=ED <=> DC=BD
tức là tam giác BDC cân tại D => ^DBC=^DCB
mà BD là phân giác nên ABC=2BCA. Do ^B+^C=90 độ
suy ra ^B = 60 độ
Vậy tam giác vuông ABC có thêm điều kiện là góc B bằng 60 độ thì MNED là hình thoi.
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔBAC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
M là trung điểm của GB
N là trung điểm của GC
Do đó: MN là đường trung bình của ΔGBC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra ED//MN và ED=MN
hay MNDE là hbh
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔBAC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
M là trung điểm của GB
N là trung điểm của GC
Do đó: MN là đường trung bình của ΔGBC
Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra ED//MN và ED=MN
hay MNDE là hình bình hành
a) Xét tứ giác MBPA có
N là trung điểm của đường chéo BA
N là trung điểm của đường chéo MP
Do đó: MBPA là hình bình hành
b) Xét ΔBCA có
M là trung điểm của BC
N là trung điểm của BA
Do đó: MN là đường trung bình của ΔBCA
Suy ra: MN//CA và \(MN=\dfrac{CA}{2}\)
mà P\(\in\)MN và \(MN=\dfrac{MP}{2}\)
nên MP//CA và MP=CA
Xét tứ giác PACM có
MP//CA(cmt)
MP=CA(cmt)
Do đó: PACM là hình bình hành
mà \(\widehat{MCA}=90^0\)
nên PACM là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật
a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
và MN=1/2DC => MN= DE(2)
từ (1)và (2) => MNED là hbh
b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
=> tam giác ADM cân tại M => MDA = DAM
=> DEN= MAD (3)
MN//DE=> MN//AE => AMNE là hình thang (4)
từ (3)và (4) => AMNE là hình thang cân
c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
và MN=1/2DC => MN= DE(2)
từ (1)và (2) => MNED là hbh
b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
=> tam giác ADM cân tại M => MDA = DAM
=> DEN= MAD (3)
MN//DE=> MN//AE => AMNE là hình thang (4)
từ (3)và (4) => AMNE là hình thang cân
c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B nhuquynhdat, 17 Tháng mười hai 2013#2
nhuquynhdatGuest
bài 2
a) AB//CD => AB//CE(1)
Xét tam giác ADE có AH là đg` cao
lại có E đối xứng với D qua H => H là trung điểm của DE => AH là trung tuyến
=> tam giác ADE cân tại A
=> ADE=AED(goác đáy tam giác cân)
mặt khác ABCD là hình thang cân => ADC=góc C
=> góc C= AED
mà 2 góc này ở vị trí đồng vị của AE và BC => AE//BC(2)
từ (1)và (2) => ABCE là hbh
b) xét tam giác AHE và tam giác FHD có góc AHE=góc DHF(đối đỉnh)
DH=HE(gt)
AE//DF(gt)=> AEH=FDH(SLT)
=>tam giác AHE=tam giác FHD(gcg) => AH=HF => H là TĐ của AF
c) Ta có AH=HF(câu b)DH=HE(gt) => ADFE là hbh
mà AH vg góc với ED=> AF vg góc với ED => ADEF là hình thoi
lại có tam giác ADE cân tại A (câu a)=> AD=AE => ADEF là hình vg