K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

Ta có: a+b=c+d

=>a-c=d-b

Lại có:a2+b2=c2+d2

=>a^2-c^2=d^2-b^2

=>(a-c*(a+c

29 tháng 11 2016

a+b=c+d

<=>(a+b)2=(c+d)2

<=>a2+b2+2ab=c2+d2+2cd

<=>2ab=2cd<=>ab=cd <=> \(\frac{a}{d}=\frac{c}{b}\)

đặt \(\frac{a}{d}=\frac{c}{b}=k=>a=dk;c=bk\)

có a2+b2=c2+d2

<=>(dk)2+b2=(bk)2+d2

<=>(dk)2-d2=(bk)2-b2

<=>d2(k2-1)-b2(k2-1)=0

<=>(k2-1)(d2-b2)=0

<=>(k-1)(k+1)(d-b)(d+b)=0

<=>k=-1;k=1;d=b;d=-b

Xét:

+) d=+b có \(\frac{a}{d}=\frac{c}{b}\) => a=+c

=>d2013=b2013;a2013=c2013;d=-b2013

đến đây hơi kì ,âm rồi

 

24 tháng 1 2017

Giả sử tích (a1−b1)(a2−b2)...(a2013−b2013) là số lẻ

Khi đó tất cả các hiệu (a1−b1,a2−b2,...,a2013−b2013) lẻ
Mà có 2013 hiệu nên tổng các hiệu a1−b1+a2−b2+...+a2013−b2013 lẻ
Hay (a1+a2+...+a2013)−(b1+b2+...+b2013) lẻ . (*)
Mặt khác , theo đề ra ta có : (a1+a2+...+a2013)−(b1+b2+...+b2013) = 0 ( mâu thuẫn với *)
Vậy điều giả sử sai hay (a1−b1)(a2−b2)...(a2013−b2013) là số chẵn
24 tháng 1 2017

Thank you Tiểu Thư họ Nguyễn và Đặng Nhật Minh

29 tháng 6 2021

12632t54s jsd

NV
8 tháng 5 2023

Trước hết, với \(a+b+c=1\) ta có:

\(a^2+b^2+c^2=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)

\(=\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+a^2b+b^2c+c^2a\)

\(\ge2a^2b+2b^2c+2c^2a+a^2b+b^2c+c^2a\)

Hay \(a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)

Từ đó:

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}=\dfrac{a^4}{a^2b}+\dfrac{b^4}{b^2c}+\dfrac{c^4}{c^2a}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)

\(\ge\dfrac{3\left(a^2b+b^2c+c^2a\right)\left(a^2+b^2+c^2\right)}{a^2b+b^2c+c^2a}=3\left(a^2+b^2+c^2\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

8 tháng 5 2023

em cảm ơn thầy nhiều ạ !

 

 

11 tháng 6 2023

\(\)Ta có: \(a+b+c=0 \Rightarrow b+c=-a \Rightarrow (b+c)^2=(-a)^2 \Leftrightarrow b^2+c^2+2bc=a^2 \Leftrightarrow a^2-b^2-c^2=2bc\)

Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)

\(P=...=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)

----
Bổ đề \(a+b+c=0 \Leftrightarrow a^3+b^3+c^3\)

Ở đây ta c/m chiều thuận:
Với \(a+b+c=0 \Leftrightarrow a+b=-c \Rightarrow (a+b)^3=(-c)^3 \Leftrightarrow a^3+b^3+3ab(a+b)=-c^3 \Leftrightarrow a^3+b^3+c^3=3abc(QED)\)

8 tháng 1 2017

Đáp án C

NV
13 tháng 8 2021

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)

25 tháng 11 2021

\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c};c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{c^3+b^3+d^3}\left(1\right)\\ \text{Đặt }\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;b=ck;c=dk\\ \Rightarrow a=bk=ck^2=dk^3\\ \Rightarrow\dfrac{a}{d}=k^3\\ \text{Mà }\dfrac{a}{b}=k\Rightarrow\dfrac{a^3}{b^3}=k^3\\ \Rightarrow\dfrac{a}{d}=\dfrac{a^3}{b^3}\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)