K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)

\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)

DD
3 tháng 3 2021

\(A=\frac{n^2+8}{n+8}=\frac{n^2+8n-8n-64+72}{n+8}=n-8+\frac{72}{n+8}\)

\(A\)là số tự nhiên suy ra \(\frac{72}{n+8}\)là số tự nhiên suy ra \(n+8\inƯ\left(72\right)\)mà \(n\inℕ\Rightarrow n+8\ge8\)

suy ra \(n+8\in\left\{8,9,12,18,24,36,72\right\}\Leftrightarrow n\in\left\{0,1,4,10,16,28,64\right\}\).

Thử lại ta đều thấy thỏa mãn. 

13 tháng 3 2018

ta có: \(\frac{13}{n}+\frac{8}{n}\)=\(\frac{21}{n}\)hay 21:n\(\Rightarrow\)n=(1;3;7;21)

18 tháng 2 2016

bai nay thi hoi kho tui chua lam duoc 

2 tháng 3 2020

ĐKXĐ : \(n+8\ne0\Rightarrow n\ne-8\)

Để \(\frac{n^2+8}{n+8}\)là số tự nhiên \(\Rightarrow\left(n^2+8\right)⋮\left(n+8\right)\)

n + 8 2 n + 8 n - n + 8 n - n 2

Để \(\left(n^2+8\right)⋮\left(n+8\right)\)\(\Rightarrow n^2-n=0\)

\(\Leftrightarrow n\left(n-1\right)=0\Rightarrow n=0\)hoặc \(n-1=0\Leftrightarrow n=1\)( TM )

Tô Hoài An chỗ đặt tính chia bạn làm chưa đúng. Phải ra thương là (n-8), dư 72.

3 tháng 8 2016

Để A là số nguyên thì 7 phải chia hết cho (n + 2) \(\Rightarrow\left(n+2\right)\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)

+ Với n + 2 = 1 => n = -1

+ Với n + 2  = -1 => n = -3

+ Với n + 2 = 7 => n = 5

+ Với n + 2 = -7 => n = -9

                              Vậy n = {-1;-3;5;-9} thì A là số nguyên

Để n + 2 là số nguyên thì 

 \(n+2\inƯ\left(7\right)\)

\(\Rightarrow n+2=\left\{-1;1;-7;7\right\}\)

\(\Rightarrow n+2=-1\Rightarrow n=-3\)

\(\Rightarrow n+2=1\Rightarrow n=-1\)

\(\Rightarrow n+2=7\Rightarrow n=5\)

\(\Rightarrow n+2=-7\Rightarrow n=-9\)