Các bạn giúp mình bài này với nhé:
Câu 1:
Cho A = 7 + 73 + 75 +...+ 72013 + 72015.
Chứng minh rằng A chia hết cho 35.
Cảm ơn các bạn nha!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=7^4\left(7^2+7-1\right)=7^4\cdot55=7^4\cdot5\cdot11⋮11\)
a, a2 + ab + 2a + 2b
= a(a + b) + 2(a + b)
= (2 + a)(a + b) chia hết cho a + b
b, Gọi 3 số nguyên liên tiếp là a; a + 1; a + 2
Ta có:
a + (a + 1) + (a + 2) = 3a + 3 = 3(a + 1) chia hết cho 3
a)
=a^2+a.b+2a+2b
=a.a+a.b+2a+2b
=a(a+b)+2(a+b)
=(a+2).(a+b)
vì (a+b)chia hết cho (a+b)
=>a+2chia hết cho a+b
=>tổng (2+a)(a+b)=(a^2+a.b+2a+2b)chia hết cho (a+b)
b)
gọi 3 số nguyên liên tiếp là a;a+1;a+2
=>tổng là a+(a+1)+(a+2)
=a.a.a+3
=> tổng 3 số liên tiếp thì chia hết cho 3
88+220=(23)8+220=224+220=224(216+1)=224x17chia het cho 17
a+b chia hết cho 5
\(\Rightarrow\)3a+3b chia hết cho 5
Xét hiệu:(3a+3b)-(3a-12b)=15b chia hết cho 5
\(\Rightarrow\)3a-12b chia hết cho 5 (vì 3a+3b chia hết cho 5)
Vậy 3a-12b chia hết cho 5
ta có a+b chia hết cho 5 thì tổng chữ số tận cùng của a và b là 5 hoặc 0
Lập bảng ra ta sẽ có bất cứ số nào lũy thừa 5 lên đều bất biến chữ số tận cùng nên sẽ chia hết cho 5^2
nhập hội ha
ta có:C=1+3+32+33+...+311
=(1+3+32)+(33+...+311)
=1.(1+3+32)+...+39.(1+3+32)
=1.13+...+39.13
=(1+...+39).13 chia hết cho 13
b.C=1+3+32+33+...+311
=(1+3+32+33)+(...+311)
=1.(1+3+32+33)+(...+311)
=1.(1+3+32+33)+...+38.(1+3+32+33)
=1.40+...+38.40
=(1+...+38).40 chia hết cho 40
Bg
Ta có: a2 + a + 2 \(⋮\) a + 1 (a \(\inℤ\))
=> aa + a + 2 \(⋮\)a + 1
=> a(a + 1) + 2 \(⋮\)a + 1
Mà a(a + 1) \(⋮\)a + 1
=> 2 \(⋮\)a + 1
=> a + 1 \(\in\)Ư(2)
Ư(2) = {1; -1; 2; -2}
=> a + 1 = 1 hay -1 hay 2 hay -2
a = 1 - 1 hay -1 - 1 hay 2 - 1 hay -2 - 1
=> a = 0 hay -2 hay 1 hay -3
Ta có :
(+) A chia hết cho 7 vì mọi số hạng của A đều chia hết cho 7 (1)
(+) \(A=7\left(1+7^2\right)+7^5\left(1+7^2\right)+....+7^{2014}\left(1+7^2\right)\)
\(\Leftrightarrow A=7.50+7^5.50+....+7^{2014}.50\)
<=> A chia hết cho 5 (2)
Mà (5;7)=1 (3)
Từ (1) ; (2) và 3
=> A chia hết cho 5.7 = 35