trên 1 kệ sách có 5 quyển sách toán, 4 sách lí, 3 sách văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên theo từng môn sách toán nằm ở giữa?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xếp 5 quyển Toán cạnh nhau: \(5!\) cách
Xếp 5 quyển Lý cạnh nhau: \(4!\) cách
Xếp 3 quyển Văn cạnh nhau: \(3!\) cách
Hoán vị 3 loại Toán-Lý-Văn: \(3!\) cách
Tổng cộng có: \(5!.4!.3!.3!=...\) cách xếp thỏa mãn
Số cách chọn 3 quyển sách văn là \(C^3_4=4\).
Số cách chọn 3 quyển sách anh là \(C^3_5=10\).
a, Số cách sắp xếp vào 1 kệ dài là \(9!.4.10=14515200\) cách.
b, Coi số sách mỗi loại là một phần tử.
Số cách sắp xếp thỏa mãn yêu cầu bài toán là \(3!.4.10=240\) cách.
Có 3 môn học nên có 3! Cách xếp sách theo môn Ứng với mỗi cách xếp theo môn có 5!cách xếp toán,4! Cách xếp hóa và 3! Cách xếp sách lí. Vậy số cách xếp sách là : 3!5!4!3!cách
Chọn C
3 nha bạn. Mà bạn có phải là fan của Fairy Tall k,nếu đúng thì kb nha
Để sắp xếp số sách đó lên kệ và thỏa mãn đầu bài ta cần làm hai công việc sau:
Đầu tiên; đặt 3 nhóm sách ( toán; văn; anh) lên kệ có 3!=6 cách.
Sau đó; trong mỗi nhóm ta có thể thay đổi cách xếp các quyển sách với nhau:
Nhóm toán có 4!=24 cách.
Nhóm văn có 2!=2 cách.
Nhóm anh có 6!=720 cách.
Theo quy tắc nhân có : 6.24.2.720=207360 cách.
Chọn B.
Chọn C
Số cách xếp 9 quyển sách lên một kệ sách dài là 9! . Suy ra số phần tử không gian mẫu: n ( Ω ) = 9!
Gọi A là biến cố: “các quyển sách cùng một môn nằm cạnh nhau”.
Ta xếp các cuốn sách cùng một bộ môn thành một nhóm
Trước hết ta xếp 2 nhóm lên kệ sách chúng ta có: 2! cách xếp
Với mỗi cách xếp 2 nhóm đó lên kệ ta có 5! cách hoán vị các cuốn sách Toán và 4! cách hoán vị các cuốn sách Văn. Suy ra n(A) = 5!.4!.2!
Xác suất cần tìm là
a) Số cách xếp 5 quyển Toán nằm cạnh nhau là: `5! . 10!`
b)
Xếp 5 quyển sách Toán, ta có `5!` cách xếp, mỗi cách xếp đều cho tar 6 khe trống.
`->` Cần xếp 3 quyển Hóa vào 6 khe trống đó.
`->` Số cách xếp là: `5!.`\(A_6^3\)`=14400`.
Coi 8 cuốn sách toán như 1 cuốn
=>Cần xếp 13 cuốn vào 13 vị trí khác nhau
=>Có 13! cách
Số cách xếp 8 cuốn sách toán là 8!(cách)
Số cách xếp là \(13!\cdot8!\)(cách)
34
34560