Giá trị lớn nhất của B= \(\frac{3,3}{1,5+x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
wow!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(x^2\ge0\Rightarrow1,5+x^2\ge1,5\) nên
\(B=\frac{3,3}{1,5+x^2}\le\frac{3,3}{1,5}=2,2\)
\(B_{max}=2,2\)dấu = sảy ra khi x= 0
Để \(B\) có \(GTLN\) thì \(1,5+x^2\) đạt \(GTNN\)
Ta có: \(x^2+1,5\ge1,5\)
Min \(x^2+1,5=1,5\) khi \(x=0\)
Vậy \(GTLN\) của \(B\) bằng \(2,2\) khi \(x=0\)
\(A=\left|3,7-x\right|+2,5\ge2,5\)
\(MinA=2,5\Leftrightarrow3,7-x=0\Rightarrow x=3,7\)
\(\left|x+1,5\right|-4,5\ge-4,5\)
\(MinB=-4,5\Leftrightarrow x+1,5=0\Rightarrow x=-1,5\)
\(C=1,5-\left|x+1,1\right|\le1,5\)
\(MinC=1,5\Leftrightarrow x+1,1=0\Rightarrow x=-1,1\)
Để \(\frac{3,3}{1,5+x^2}\) đạt GTLN thì 1,5+x2 đạt GTNN
Vì x2 > 0 nên GTNN của x = 0 => 1,5+x2 = 1,5
\(\frac{3,3}{1,5}\)=2,2
Vậy x = 2,2
2,2