K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

20x

3 tháng 8 2018

ta có : \(\left(2nx+\dfrac{1}{2nx^2}\right)^{3n}=\sum\limits^{3n}_{k=0}C^k_{3n}\left(2nx\right)^{3n-k}\left(\dfrac{1}{2nx^2}\right)^k\)

\(=\sum\limits^{3n}_{k=0}C^k_{3n}2^{3n-2k}\left(n\right)^{3n-2k}\left(x\right)^{3n-3k}\)

\(\Rightarrow\) tổng hệ số bằng : \(C^0_{3n}+C_{3n}^1+C^2_{3n}+...+C^{3n}_{3n}=64\)

\(\Leftrightarrow\left(1+1\right)^{3n}=64\Leftrightarrow2^{3n}=2^6\Rightarrow n=2\)

để có số hạng không chữa \(x\) không khai triển thì \(3n-3k=0\Leftrightarrow n=k\)

\(\Rightarrow\) hệ số của số hạng không chữa \(x\)\(C^2_6.2^2.2^2=240\)

vậy ...........................................................................................................................

13 tháng 11 2019

Mysterious Person bn ơi cho mik hỏi chút nha , tại sao ở trên có

23n-2kn3n-2k mà ở dưới phần tổng hệ số í lại ko có ....Mong bn giúp mik ...

20 tháng 12 2016

28

20 tháng 12 2016

bn giải rõ ra đi

NV
6 tháng 11 2019

\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)

Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn

Vậy trong khai triển trên ko có số hạng chứa \(x^8\)

b/ \(\left(1-x^2+x^4\right)^{16}\)

\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)

\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)

Hệ số của số hạng chứa \(x^{16}\):

\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)

c/ SHTQ của khai triển \(\left(1-2x\right)^5\)\(C_5^k\left(-2\right)^kx^k\)

Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)

SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)

29 tháng 11 2019

em không hiểu phần b ạ

NV
3 tháng 11 2019

\(\left(x+x^{-1}\right)^n=\sum\limits^n_{k=0}C_n^kx^k\left(x^{-1}\right)^{n-k}=\sum\limits^n_{k=0}C_n^kx^{2k-n}\)

Theo bài ra ta có: \(C_n^2-C_n^1=35\)

\(\Leftrightarrow\frac{n!}{2!\left(n-2\right)!}-\frac{n!}{\left(n-1\right)!}=35\)

\(\Leftrightarrow\frac{n\left(n-1\right)}{2}-n=35\)

\(\Leftrightarrow n^2-3n-70=0\Rightarrow n=10\)

Số hạng ko chứa x \(\Rightarrow2k-n=0\Rightarrow k=\frac{n}{2}=5\)

Số hạng đó là \(C_{10}^5\)

2 tháng 3 2017

Câu 1: Đặt a/x là m; b/y là n; c/z là p, ta có: m + n + p = 2; 1/m + 1/n + 1/p = 0. Tìm m2 + n2 + p2 ?

Từ 1/m + 1/n + 1/p = 0

=> mnp(1/m + 1/n + 1/p) = 0
<=> mn + np + mp = 0

Mặt khác, ta có (m + n + p)2 = m2 + n2 + p2 + 2(mp + np + mp) = 4

Mà mn + np + mp = 0 => m2 + n2 + p2 + 0 = 4

Trả lời: Vậy a2/x2 + b2/y2 + c2/z2 = 4

3 tháng 3 2017

Cảm ơn bạn nha !

18 tháng 12 2021

Cái này tui chưa học đâu nha bạn iu

NV
10 tháng 10 2019

\(P=\left(\frac{\left(\sqrt[3]{x}+1\right)\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)^{10}\)

\(=\left(\sqrt[3]{x}+1-\frac{\sqrt{x}+1}{\sqrt{x}}\right)^{10}=\left(\sqrt[3]{x}-\frac{1}{\sqrt{x}}\right)^{10}=\left(x^{\frac{1}{3}}-x^{\frac{-1}{2}}\right)^{10}\)

\(=\sum\limits^{10}_{k=0}C_{10}^k.\left(-1\right)^{10-k}.\left(x^{\frac{1}{3}}\right)^k.\left(x^{\frac{-1}{2}}\right)^{10-k}=\sum\limits^{10}_{k=0}C_{10}^k\left(-1\right)^{10-k}x^{\frac{5k-30}{6}}\)

Số hạng ko chứa x \(\Rightarrow\frac{5k-30}{6}=0\Rightarrow k=6\)

\(\Rightarrow C_{10}^6.\left(-1\right)^4=210\)