tổng tất cả các chữ số của một số tự nhiên có 3 chữsố là 21. chữ số hàng đơn vị lớn hơn chữ số chục, nếu đổi chữ số hàng đơn vị và chữ số hàng trăm ta sẽ nhận đc 1 số tự nhiên mới lớn hơn số ban đầu là 198 , tìm số ban đầu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên đó có dạng \(\overline{abc}\left(1\le a\le9;0\le b,c\le9;a,b,c\in\mathbb{N}\right)\)
Theo đề bài ta có: \(a+b+c=21;c>b;\overline{cba}-\overline{abc}=198\left(1\right)\)
Hay \(\left\{{}\begin{matrix}a+b+c=21\\99\left(c-a\right)=198\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+c=21\\c-a=2\end{matrix}\right.\Rightarrow\left(c-2\right)+b+c=21\)
\(\Leftrightarrow2c+b=23.\) Mà ta có: \(23=2c+b< 3c\Rightarrow c>\dfrac{23}{3}\Rightarrow9\ge c\ge8\) (do $c\in \N$)
Với $c=9$ thì $b=5$ suy ra $a=7.$ Vậy số đó là $759.$
Với $c=8$ thì $b=7$ suy ra $a=6.$ Vậy số đó là $678$
Lâu không giải toán $6$ nên mình không chắc về cách trình bày đâu bạn nhé.
Số tự nhiên đó có dạng ¯¯¯¯¯¯¯¯abc(1≤a≤9;0≤b,c≤9;a,b,c∈N)
Theo đề bài ta có: a+b+c=21;c>b;¯¯¯¯¯¯¯¯cba−¯¯¯¯¯¯¯¯abc=198(1)
Hay {a+b+c=2199(c−a)=198⇔{a+b+c=21c−a=2⇒(c−2)+b+c=21
⇔2c+b=23.
Mà ta có: 23=2c+b<3c⇒c>233⇒9≥c≥8 (do c∈\N)
Với c=9
thì b=5 suy ra a=7. Vậy số đó là 759.
Với c=8
thì b=7 suy ra a=6. Vậy số đó là 678
( Gọi x (km/h) là vận tốc người thứ hai. y (km) là chiều dài quãng đường đua.
Điều kiện: x 3, y > 0
Ta có: x + 15 (km/h) là vận tốc môtô thứ nhất. x – 3 (km/h) là vận tốc mô tô người thứ ba
Đổi 12 phút = 1/5 giờ 3 phút = 1/20 giờ
Theo đề bài ta có hệ phương trình trên và Phương pháp giải hệ phương trình trên.
Kết quả: x = 75, y = 90
Vậy vận tốc mô tô thứ nhất là: 90 km/h; vận tốc mô tô thứ hai là 75 km/h; vận tốc mô tô thứ ba là 72 km/h
Gọi số tự nhiên đó là ab(ab>14). Theo đề bài ta có:
Chữ số hàng đơn vị lớn hơn chữ số hàng chục là 4 đơn vị nên ta có phương trình: \(-a+b=4\left(1\right)\)
Nếu đổi chỗ 2 chữ số cho nhau thì được số mới bằng \(\dfrac{17}{5}\) số cũ nên ta có phương trình: \(ba-ab=\dfrac{17}{5}\Leftrightarrow10b+a-10a-b=\dfrac{17}{5}\Leftrightarrow9b-9a=\dfrac{17}{5}\Leftrightarrow-45a+45b=17\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=4\\-45a+45b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-45a+45b=180\left(3\right)\\-45a+45b=17\left(2\right)\end{matrix}\right.\) Trừ từng vế của (3) cho (2) ta được:
\(\Rightarrow0a+0b=180-17=163\) Vô lí \(\Rightarrow\) Ko có a,b
Vậy ko tồn tại số tự nhiên thỏa mãn đề bài
Gọi số cần tìm là \(\overline{ab}\)
Theo đề, ta có: b=3a và 10b+a-10a-b=18
=>3a-b=0 và -9a+9b=18
=>a=1 và b=3