K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017
 

cách 1

 1 tam giác cân tại đỉnh nào thì các đường trung tuyến, phân giác, đường cao, đường trung trực đều là 1 (chứng minh không khó) => CM được luôn phân a 

b/ Ta có AD là phân giác góc BAC (gt) => góc DAC = gócBAC/2 (1) 
Tương tự góc CAF = gócCAE/2 (2) 
Mà góc BAC + góc CAE = 180 độ (kề bù) (3) 
Từ (1);(2) và (3) => góc DAC + góc CAF =180/2 = 90độ => AF vuông góc với AD. Mà BC cũng vuông góc với AD (Cm phần a) => AF // BC (quan hệ từ vuông góc đến song song). 

c/ Do AF // BC (CM trên) => góc DCA = góc CAF (so le trong) => góc CAF = góc ABC => góc ABC = góc EAF 
Xét tam giác BDA và tam giác AFE có AB = AE (gt); góc ABC = góc EAF và BD = AF (gt) 
=> 2 tam giác này bằng nhau(c.g.c) => góc BDA = góc EFA = 90độ và EF = AD 

d/ Chứng minh tương tự phần c ta được tam giác FAC = tam giác DCA(c.g.c) => góc AFC = góc ADC = 90độ. 
Ta thấy nếu E;F;C thẳng hàng thì suy ra: + Góc EFC = 180độ (góc bẹt) 
+ góc AEF = góc AEC 
Ngoài ra còn tạo ra góc đối đỉnh,... 
Nên ngược lại ta có thể dùng các điều suy ra để chứng minh các điểm thẳng hàng 
Ta có : góc EFA + góc AFC = 90độ + 90độ = 180 độ => 3 điểm E;F và C thẳng hàng (đpcm)

cách 2

a, vì tam giác ABC cân tại A =>đường phân giác cũng là đường cao => AD vuông góc BC 
b, Xét tam giác AEC cân ( AE = AC ), phân giác AF là đường cao => góc AFC = 90 độ 
xét tứ giác AFCD có hai góc đối bằng 90 độ => tứ giác là hình chữ nhật 
=> AF ss BC 
c, Xét tam giác ADC = tam giác AFC ( cạnh huyền - góc nhọn ) => AD = FC mà FC = EF => EF = AD 
d, Xét góc CFE = 180 độ => E, F, C thẳng hàng

bn chọn cách nào thì chọn nhưng nhớ k mk nha!

Mình nghĩ là mình làm sai nên bạn đừng chép theo nhé!!!   
14 tháng 11 2017

A B C D E
a) Điểm E nằm trên tia đối của DE suy ra B nằm giữa E và D.
 Vì vậy  tia AB nằm giữa tia AE và AD suy ra  \(\widehat{CAE}=\widehat{CAB}+\widehat{BAE}\)
Từ đó suy ra \(\widehat{CAE}>\widehat{CAB}\).
Tương tự \(\widehat{DCB}+\widehat{DCE}=\widehat{DCE}\). Từ đó suy ra \(\widehat{ACE}>\widehat{DCB}\).
Theo định lý tổng ba góc trong một tam giác:
\(\widehat{AEC}=180^o-\left(\widehat{CAE}+\widehat{ACE}\right)< 180^o-\left(\widehat{CAB}+\widehat{ACB}\right)=90^o\).
Suy ra \(\widehat{AEC}< 90^o\) hay góc AEC là góc nhọn.

b) Xét ΔABC vuông tại A và ΔDBE vuông tại D có 

AB=BD(gt)

\(\widehat{ABC}\) chung

Do đó: ΔABC=ΔDBE(cạnh góc vuông-góc nhọn kề)

c) Xét ΔBAH vuông tại A và ΔBDH vuông tại D có 

BH chung

BA=BD(gt)

Do đó: ΔBAH=ΔBDH(Cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)

hay BH là tia phân giác của \(\widehat{ABC}\)

d) Ta có: BH là tia phân giác của \(\widehat{ABC}\)(cmt)

nên \(\widehat{ABH}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)

Ta có: \(\widehat{ABH}+\widehat{HBK}=90^0\)

\(\Leftrightarrow\widehat{HBK}+30^0=90^0\)

hay \(\widehat{HBK}=60^0\)

Xét ΔCHD vuông tại D và ΔCBA vuông tại A có 

\(\widehat{ACB}\) chung

Do đó: ΔCHD\(\sim\)ΔCBA(g-g)

Suy ra: \(\widehat{CHD}=\widehat{CBA}\)(hai góc tương ứng)

\(\Leftrightarrow\widehat{CHD}=60^0\)

mà \(\widehat{CHD}=\widehat{HKB}\)(hai góc so le trong, BK//AC)

nên \(\widehat{HKB}=60^0\)

Xét ΔHBK có 

\(\widehat{HKB}=60^0\)(cmt)

\(\widehat{HBK}=60^0\)(cmt)

Do đó: ΔHBK đều(Dấu hiệu nhận biết tam giác đều)

11 tháng 7 2021

Ý d bạn chứng minh góc BHD = 60 độ thì bài sẽ ngắn hơn bạn giải xong thì mình làm xong rồi nhưng vẫn cảm ơn bạn ! 

9 tháng 2 2021

Ta có: Ot là tia phân giác góc xOy (gt)

=>  ^tOx = ^tOy = \(\dfrac{xOy}{2}=\dfrac{180^o}{2}=90^o\)

hay ^AOC = ^BOD = 90o

Xét tam giác AOC và tam giác DOB có: 

^AOC = ^BOD (cmt)

OA = OD (gt)

OC = OB (gt)

=> Tam giác AOC = Tam giác DOB (c - g - c)

=>  AC = BD (2 cạnh tương ứng)

b) Gọi giao điểm của AC và BD là M

Ta có: ^OBD + ^BDO = 90o (Tam giác DOB vuông tại O; ^DOB = 90o)

mà ^OBD = ^OCA (Tam giác AOC = Tam giác DOB)

=>  ^OCA + ^BDO = 90o

Xét tam giác CMD có: ^OCA + ^BDO = 90(cmt)

=> Tam giác CMD vuông tại M

=> CM vuông góc MD

hay AC vuông góc BD (đpcm)