K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 8 2021

\(A=\dfrac{2.2\sqrt{x-4}}{12x}\le\dfrac{2^2+x-4}{12x}=\dfrac{1}{12}\)

\(A_{max}=\dfrac{1}{12}\) khi \(x=8\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Có bài ngược của bài này, bạn đăng và đã có lời giải thì chỉ cần đảo lại đáp án là được.

 

NV
30 tháng 7 2021

\(E=\sqrt{x}+\dfrac{4}{\sqrt{x}}-2=\dfrac{4\sqrt{x}}{9}+\dfrac{4}{\sqrt{x}}+\dfrac{5}{9}.\sqrt{x}-2\)

\(E\ge2\sqrt{\dfrac{16\sqrt{x}}{9\sqrt{x}}}+\dfrac{5}{9}.\sqrt{9}-2=\dfrac{7}{3}\)

\(E_{min}=\dfrac{7}{3}\) khi \(x=9\)

\(F=3\sqrt{x}+\dfrac{1}{\sqrt{x}}+1=2\sqrt{x}+\dfrac{1}{\sqrt{x}}+\sqrt{x}+1\)

\(F\ge2\sqrt{\dfrac{2\sqrt{x}}{\sqrt{x}}}+1.\sqrt{\dfrac{1}{2}}+1=\dfrac{2+5\sqrt{2}}{2}\)

\(F_{min}=\dfrac{2+5\sqrt{2}}{2}\) khi \(x=\dfrac{1}{2}\)

11 tháng 10 2021

a: \(f\left(-x\right)=-2\cdot\left(-x\right)^3+3\cdot\left(-x\right)\)

\(=2x^3-3x\)

\(=-\left(-2x^3+3x\right)\)

=-f(x)

Vậy: f(x) là hàm số lẻ

c: TXĐ: D=[-2;2]

Nếu \(x\in D\Leftrightarrow-x\in D\)

\(f\left(-x\right)=\sqrt{6-3\cdot\left(-x\right)}-\sqrt{6+3\cdot\left(-x\right)}\)

\(=\sqrt{6+3x}-\sqrt{6-3x}\)

\(=-f\left(x\right)\)

Vậy: f(x) là hàm số lẻ

11 tháng 10 2021

Còn b,d thì làm sao v ạ.

1)

ĐKXĐ: x>4

Ta có: \(\dfrac{\sqrt{x+5}}{\sqrt{x-4}}=\dfrac{\sqrt{x-2}}{\sqrt{x+3}}\)

\(\Leftrightarrow x^2+8x+15=x^2-6x+8\)

\(\Leftrightarrow8x+6x=8-15\)

\(\Leftrightarrow14x=-7\)

hay \(x=-\dfrac{1}{2}\)(loại)

2) Ta có: \(\sqrt{4x^2-9}=3\sqrt{2x-3}\)

\(\Leftrightarrow\sqrt{2x-3}\left(\sqrt{2x+3}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)

10 tháng 11 2021

\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

10 tháng 11 2021

GHI RÕ DÙM MÌNH ĐK CỦA CẢ 3 CÂU LUÔN ĐC KO Á.

15 tháng 12 2021

\(2\sqrt{a}-a\sqrt{\dfrac{4}{a}}\)

\(=2\sqrt{a}-a.\dfrac{\sqrt{4}}{\sqrt{a}}\)

\(=2\sqrt{a}-a.\dfrac{2}{\sqrt{a}}\)

\(=2\sqrt{a}-2\sqrt{a}\)

\(=0\)

20 tháng 8 2021

2+ 6/ căn x -1

8 tháng 5 2021

Hướng làm:

Thấy cả tử mẫu cộng lại đều bằng 2021 → Cộng thêm 1 rồi quy đồng với mỗi phân thức

\(\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\\ \Leftrightarrow\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\\ \Leftrightarrow\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}\right)=0\\ \Leftrightarrow x+2021=0\Leftrightarrow x=-2021\)

8 tháng 5 2021

\(< =>\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\)

\(< =>\dfrac{x+2+2019}{2019}+\dfrac{x+3+2018}{2018}=\dfrac{x+4+2017}{2017}+\dfrac{x+2021}{2021}\)

\(< =>\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\)

\(< =>\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}=\right)=0\)

\(< =>x+2021=0< =>x=-2021\)

Vậy....

 

ĐKXĐ: \(x\notin\left\{0;-9\right\}\)

Ta có: \(\dfrac{1}{x+9}-\dfrac{1}{x}=\dfrac{1}{5}+\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{20x}{20x\left(x+9\right)}-\dfrac{20\left(x+9\right)}{20x\left(x+9\right)}=\dfrac{4x\left(x+9\right)+5x\left(x+9\right)}{20x\left(x+9\right)}\)

Suy ra: \(4x^2+36x+5x^2+45x=20x-20x-180\)

\(\Leftrightarrow9x^2+81x+180=0\)

\(\Leftrightarrow x^2+9x+20=0\)

\(\Leftrightarrow x^2+4x+5x+20=0\)

\(\Leftrightarrow x\left(x+4\right)+5\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(nhận\right)\\x=-5\left(nhận\right)\end{matrix}\right.\)

Vậy: S={-4;-5}