K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

Ta có :

\(2\left(10a+b\right)+\left(a+5b\right)=20a+2b+a+5b=\left(20a+a\right)+\left(2b+5b\right)\)

\(=21a+7b=7\left(3a+b\right)\)

+) Nếu : \(\left(10a+b\right)⋮7\Rightarrow\left(a+5b\right)⋮7\) ( Vì : \(7\left(3a+b\right)⋮7\) )

+) Nếu : \(\left(a+5b\right)⋮7\Rightarrow2\left(10a+b\right)⋮7\) ( Vì : \(7\left(3a+b\right)⋮7\) )

Mà : 2 và 7 là hai số nguyên tố cùng nhau .

\(\Rightarrow10a+b⋮7\)

Vậy ...

10 tháng 11 2016

a+5b chia hết 7 thì a và b chia hết cho 7

vậy 10a +b chia hết 7

11 tháng 11 2016

Ta có :

\(a+5b⋮7\)

\(\Leftrightarrow21a-a+5b-7b⋮7\)

\(\Leftrightarrow20a-2b⋮7\)

\(\Leftrightarrow2\left(10a-b\right)⋮7\)

Mà ( 2 ; 7 ) = 1

=> 10a - b chia hết cho 7

** Sai đề nhé bạn

8 tháng 4 2017

Ta xét hiệu:

(10a + 50b) - (10a + b) = 10a + 50b - 10a - b

= 49b \(⋮\) 7

\(\Rightarrow\) (10a + 50b) - (10a + b) (1)

Theo bài ra: a + 5b \(⋮\) 7

\(\Rightarrow\) 10(a + 5b) \(⋮\) 7 (2)

Từ (1) và (2), suy ra:

10a + b \(⋮\) 7

Vậy nếu a + 5b chia hết cho 7 thì 10a + b cũng chia hết cho 7

19 tháng 1 2017

+ Nếu \(a\)\(;\)\(b\) không chia hết cho 3  \(\Rightarrow\) \(a^2;\)\(b^2\)chia 3 dư 1
khi đó \(a^2+b^2\) chia 3 dư 2  \(\Rightarrow\)\(c^2\) chia 3 dư 2  (vô lý)
 \(\Rightarrow\)trường hợp  \(a\)\(b\) không chia hết cho 3 không xảy ra \(\Rightarrow\) \(abc\)\(⋮\)\(3\)                                      \(\left(1\right)\)

+ Nếu \(a\)\(;\)\(b\) không chia hết cho 5 \(\Rightarrow\)\(a^2\) chia 5 dư 1 hoặc 4 cà \(b^2\) chia 5 dư 1 hoặc 4

  • Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 1  \(\Rightarrow\) \(c^2\) chia 5 dư 2            (vô lí) 
  • Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 4  \(\Rightarrow\) \(c^2\) chia 5 dư 0  \(\Rightarrow\) \(c\)\(⋮\)\(5\) 
  • Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 1  \(\Rightarrow\) \(c^2\) chia 5 dư 0  \(\Rightarrow\) \(c\) \(⋮\)\(5\)
  • Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 4  \(\Rightarrow\) \(c^2\) chia 5 dư 3            (vô lí).                                               Vậy ta luôn tìm được một giá trị của \(a,\)\(b,\)\(c\)thỏa mãn \(abc\)\(⋮\)\(5\)                                               \(\left(2\right)\)

+ Nếu  \(a,\)\(b,\)\(c\) không chia hết cho 4  \(\Rightarrow\) \(a^2,\)\(b^2,\)\(c^2\) chia  8 dư 1 hoặc 4
khi đó \(a^2+b^2\) chia  8 dư \(0,\)\(2\)hoặc
\(\Rightarrow\) c2:5 dư 1,4. vô lý => a hoặc b hoặc c chia hết cho 4                             (3)
Từ (1) (2) và (3) => abc chia hết cho 60

5 tháng 11 2017

   

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

6 tháng 1 2018

a+ 5b chia hết cho 7

=> 10*(a+5b) chia hết cho 7

=> 10a+50b chia hết cho 7

=> 10a+ b + 49 b chia hết cho 7

mà 49b chia hết cho 7

=> 10a+b chia hết cho 7

6 tháng 1 2018

trình bày đầy đủ, giải hiểu giùm mk nha

5 tháng 2 2016

Xét abba

abba = 1001a + 110b = 11(91a + 10b) chia hết cho 11

Xét aaabbb:

aaabbb = 111000a + 111b = 37(3000a + 3) chia hết cho 37

Xét ababab

ababab = 101010a + 10101b = 7(14430a + 1443b) chia hết cho 7

Xét abab - baba

abab - baba = 1010a + 101b - 1010b - 101a = (1010a - 101a) - (1010b - 101b) = 909a - 909b = 909(a - b) chia hết cho 9

18 tháng 12 2018

\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)

\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)

b, tự tương

18 tháng 12 2018

\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\)         (  vì \(28a+28⋮7\) ) 

                     \(\Leftrightarrow30a+33⋮7\)

                     \(\Leftrightarrow3.\left(10a+11\right)⋮7\)

                     \(\Leftrightarrow10a+11⋮7\)   (  vì \(\left(3;7\right)=1\) ) 

Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)

Câu b bn xem lại đề hộ mk chút nhé!