Cho O là trung điểm của AB. Trên hai nửa mặt phẳng đối nhau bờ AC, vẽ các tia Ax và By cùng vuông góc với AB. Lấy điểm M trên tia Ax, điểm N trên tia By sao cho AM=BN. CMR o là trung điểm của MN
vẽ hình jum mk luôn nka
Cảm ơn nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
Xét Δ MAO và Δ NBO có:
OA = OB (gt)
MAO = NBO = 90o (gt)
AM = BN (gt)
Do đó, Δ MAO = Δ NBO (c.g.c)
=> OM = ON (2 cạnh tương ứng) (1)
MOA = NOB (2 góc tương ứng)
Ta có: MOA + MOB = 180o (kề bù)
Do đó, NOB + MOB = 180o
=> MON = 180o hay 3 điểm O, M, N thẳng hàng (2)
Từ (1) và (2) => O là trung điểm của MN (đpcm)
1: Xét tứ giác ACBD có
AC//BD
AC=BD
=>ACBD là hbh
=>O là trung điểm chung của AB và CD
2: Xét tứ giác AEBF có
AF//BE
AF=BE
=>AEBF là hbh
=>O là trung điểm của EF
a)Vì BN=AC mà AC=AM'
=> BN=AM' (tính chất bắc cầu)
vì BN=AM', AB=AB
=>AN=BM'
Vì BN'=BC mà BC=AM
=>BN'=AM
Vì BN'=AM, AB=AB
=>AN'=BM
Vì BN=AC ,AM=BC
=>MC=NC
b) mình chịu
Câu hỏi của kakemuiki - Toán lớp 7 - Học toán với OnlineMath
Giải:
Xét \(\Delta MAO\) và \(\Delta BNO\) có:
\(\widehat{O_1}=\widehat{O_2}\) ( đối đỉnh )
OA = OB ( gt )
\(\widehat{A}=\widehat{B}\left(=90^o\right)\)
\(\Rightarrow\Delta MAO=\Delta BNO\)
\(\Rightarrow OM=ON\)
\(\Rightarrow\) O là trung điểm của MN ( đpcm )
Cho mình bổ sung là bằng nhau theo trường hợp góc cạnh góc nhé