K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2016

Ta có:

\(A=\frac{1}{\sqrt{2}+\sqrt{1}}+\frac{1}{\sqrt{3}+\sqrt{2}}+...+\frac{1}{\sqrt{25}+\sqrt{24}}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{25}-\sqrt{24}}{25-24}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{1}+\frac{\sqrt{3}-\sqrt{2}}{1}+...+\frac{\sqrt{25}-\sqrt{24}}{1}\)

\(=5-1=4\)

21 tháng 5 2017

Nhân liên hiệp ta được :

\(\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}-\sqrt{2}\right)\left(\sqrt{1}+\sqrt{2}\right)}+\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{\sqrt{24}+\sqrt{25}}{\left(\sqrt{24}-\sqrt{25}\right)\left(\sqrt{24}+\sqrt{25}\right)}\)

\(=\frac{\sqrt{1}+\sqrt{2}}{1-2}+\frac{\sqrt{2}+\sqrt{3}}{2-3}+...+\frac{\sqrt{24}+\sqrt{25}}{24-25}\)

\(=-\sqrt{1}-\sqrt{2}-\sqrt{2}-\sqrt{3}-....-\sqrt{24}-\sqrt{25}\)

\(=-\left[\frac{\left(\sqrt{25}+\sqrt{1}\right).25}{2}+\frac{\left(\sqrt{24}+\sqrt{2}\right).23}{2}\right]\)

\(=...\)

20 tháng 11 2019

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{24}+\sqrt{25}}\)

\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{1}+\sqrt{2}}+\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}}\)

\(+...+\frac{\left(\sqrt{25}-\sqrt{24}\right)\left(\sqrt{25}+\sqrt{24}\right)}{\sqrt{24}+\sqrt{25}}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{25}-\sqrt{24}\)

\(=\sqrt{25}-1=5-1=4\)

30 tháng 10 2016

\(\frac{1}{\sqrt{1}\sqrt{2}}+\frac{1}{\sqrt{2}\sqrt{3}}+...+\frac{1}{\sqrt{24}\sqrt{25}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{25}}\)

28 tháng 11 2020

\(A=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{n}-\sqrt{n-1}}{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}\)\(A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n}-\sqrt{n-1}\)

\(A=\sqrt{n}-\sqrt{1}\)

\(B=\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}-\sqrt{2}\right)\left(\sqrt{1}+\sqrt{2}\right)}+\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{\sqrt{24}+\sqrt{25}}{\left(\sqrt{24}-\sqrt{25}\right)\left(\sqrt{24}+\sqrt{25}\right)}\)

\(B=-\left(\sqrt{1}+\sqrt{2}\right)-\left(\sqrt{2}+\sqrt{3}\right)-...-\sqrt{24}+\sqrt{25}\)

\(B=-1-2\sqrt{2}-2\sqrt{3}-...-\sqrt{24}-5\)

\(B=-1-2\sqrt{2}-2\sqrt{3}-...-\sqrt{24}-5\)

\(B=-6-2\sqrt{2}-2\sqrt{3}-...-2\sqrt{24}\)

29 tháng 11 2020

ta có \(\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{\sqrt{1}-\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}=\frac{\sqrt{1}-\sqrt{2}}{1-2}=\sqrt{1}-\sqrt{2}\)

mấy cái kia cũng thế a

\(=>A=\left(\sqrt{2}-1\right)+\left(\sqrt{3}-2\right)+...+\left(\sqrt{n}-\sqrt{n-1}\right)\)=>A= căn n -1

30 tháng 10 2016

lớp 9 mà

30 tháng 10 2016

lớp 7 mak bn

20 tháng 11 2019

\(A=\frac{\sqrt{1}+\sqrt{2}}{1-2}-\frac{\sqrt{2}+\sqrt{3}}{2-3}+\frac{\sqrt{3}+\sqrt{4}}{3-4}-...-\frac{\sqrt{24}+\sqrt{25}}{24-25}\)

\(=-\sqrt{1}-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+...+\sqrt{24}+\sqrt{25}\)

\(=-\sqrt{1}+\sqrt{25}\)

\(=-1+5\)

\(=4.\)

NV
13 tháng 3 2020

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(\Rightarrow\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{25\sqrt{24}+25\sqrt{24}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{25}}=1-\frac{1}{5}=\frac{4}{5}\)

23 tháng 6 2018

\(A=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+.......+\frac{\sqrt{n}-\sqrt{n-1}}{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n}-1\right)}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+........+\frac{\sqrt{n}-\sqrt{n-1}}{n-\left(n-1\right)}\)

\(=\sqrt{2}-\sqrt{1}+...........+\sqrt{n}-\sqrt{n-1}\)

\(=\sqrt{n}-\sqrt{1}=\sqrt{n}-1\)

bài B tương tự