Tìm các số x,y
a) biết 13x = 7y và x + y = 40
b) biết \(\frac{x}{19}=\frac{y}{21}\) và x - y = 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Áp dụng tính chất của tỉ lệ thức ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{-21}{7}\)\(=-3\)
Khi đó: \(\frac{x}{3}=-3\Rightarrow x=-9;\frac{y}{4}=-3\Rightarrow y=-12\)
b/ Áp dụng tính chất của tỉ lệ thức ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{-32}{8}=-4\)
Khi đó: \(\frac{x}{3}=-4\Rightarrow x=-12;\frac{y}{5}=-4\Rightarrow y=-20\)
a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{y}=\frac{3k}{4k}\)(k\(\in\)Z,k\(\ne\)0)
\(\Rightarrow x=3k,y=4k\)
\(Tacóx+y=-21\Rightarrow3k+4k=-21\)
=>7k=-21=>k=-3
Tương tự với câu b nhé
Have a nice day!!!!
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{-21}{7}=-3\)
+) \(\frac{x}{3}=-3\Leftrightarrow x=-9\)
+) \(\frac{y}{4}=-3\Leftrightarrow y=-12\)
Vậy x = -9; y = -12
b) Ta có : \(3x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)
+) \(\frac{x}{7}=-4\Leftrightarrow x=-28\)
+) \(\frac{y}{3}=-4\Leftrightarrow y=-12\)
Vậy x = -28; y = -12
_Chúc bạn học tốt_
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) =>\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy ...
a/
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)\(\Rightarrow x=20;y=12;z=42\)
b/\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+20}=2\)
\(\Rightarrow x=20;y=30;z=42\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)
\(\frac{x}{19}=-2\Rightarrow x=19.\left(-2\right)=-38\)
\(\frac{y}{21}=-2\Rightarrow y=21.-2=-42\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/19=y/21=(x-y)/(19-21)=4/-2=-2
=> x=-2×19=-38;y=-2×21=-42
a, Thay \(x=\frac{7}{13}\)vào \(x+y=40\)=> \(\frac{7}{13}+y=40\Rightarrow y=40-\frac{7}{13}\Rightarrow y=\frac{513}{13}\)
b, Ta có: \(13x=7y\Rightarrow\frac{x}{7}=\frac{y}{13}\)và x+y=-60. Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{-60}{20}=-3\) \(\Rightarrow\hept{\begin{cases}\frac{x}{7}=-3\Rightarrow x=-3\cdot7=-21\\\frac{y}{13}=-3\Rightarrow y=-3\cdot13=-39\end{cases}}\)
\(a,\frac{x}{3}=\frac{y}{5}\)
=> (x+y)/(3+5) = x/3 = y/5
=> 32/8 = x/3 = y/5
=> 4 = x/3 = y/5
=> x = 12 ; y = 20
b, x/2 = y/5
=> x + y/2 + 5 = x/2 = y/5
=> 21/7 = x/2 = y/5
=> 3 = x/2 = y/5
=> x = 6 và y = 15
c.7x=3y và x-y=16
đặt x/3=y/7
=>x/3=y/7=x-y/3-7=16/-4=-4(vì x-y=16)
=>x/3=-4=-12
=>y/7=-4=-28
vậy .....
a) x/7 = y/13
k = 40/20 = 2
x = 26
y = 14
b) tuog tu
a) Cách 1: Từ \(13x=7y\) suy ra \(\frac{x}{7}=\frac{y}{13}\). Theo tính chất của dãy các tỉ số bằng nhau ta có: \(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\).
Từ đó ta được: \(x=7.2=12;y=13.2=26\).
Cách 2: Đặt \(\frac{x}{7}=\frac{y}{13}=k\) ta có: \(x=7k,y=13k\).
Thay vào hệ thức \(x+y=40\) ta được \(7k+13k=40\), suy ra \(k=2.\)
Do đó \(x=7.2=14,y=13.2=26\)
b) Làm tương tự câu a) ta có:
\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)
Từ đó \(x=19.\left(-2\right)=-38,y=21.\left(-2\right)=-42\)