K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2016

Vì (3;5)=1 nên pt có nghiệm nguyên

\(3x-5y=9\\ \Rightarrow y=\frac{3x-9}{5}=\frac{1-2x}{5}+x-2\)

Đặt t=\(\frac{1-2x}{5}\left(t\in Z\right)\)

\(\Rightarrow x=\frac{1-5t}{2}\)\(=\frac{t-1}{2}+1-3t\)

Đặt n=\(\frac{t-1}{2}\left(n\in Z\right)\)\(\Rightarrow t=2n+1\)

\(\Rightarrow\begin{cases}y=t+x-2\\x=n+1-3t\\t=2n+1\end{cases}\Rightarrow\begin{cases}y=-3n-3\\x=-5n-2\end{cases}\left(n\in Z\right)}}\)

17 tháng 1 2019

\(\Leftrightarrow y=\dfrac{3x-9}{5}=\dfrac{3\left(x-3\right)}{5}\)\(\Rightarrow x-3⋮5\)\(\Rightarrow x=5k+3\left(k\in Z\right)\)\(\Rightarrow y=\dfrac{3.5k}{5}=3k\)

Vậy pt có vô số nghiệm với nghiệm tổng quát (x;y)=(5k+3\(\left(k\in Z\right)\) ;3k).

To approve a single suggestion, mouse over it and click "✔" Click the bubble to approve all of its suggestions.

Bài 1: 

3x+2y=7

\(\Leftrightarrow3x=7-2y\)

\(\Leftrightarrow x=\dfrac{7-2y}{3}\)

Vậy: \(\left\{{}\begin{matrix}y\in R\\x=\dfrac{7-2y}{3}\end{matrix}\right.\)

23 tháng 11 2016

Mình chưa học phương trình nên giải theo cách của lớp dưới thôi :)))

Vì \(\hept{\begin{cases}345⋮5\\5y^2⋮5\end{cases}}\Rightarrow3x^2⋮5\)

Mà \(\left(3;5\right)=1\Rightarrow x^2⋮5\Rightarrow x⋮5\)

Lại có \(3x^2\le345\Rightarrow x^2\le115\Rightarrow\left|x\right|\le10\)

Mà \(x⋮5\Rightarrow x\in\left\{0;\pm5;\pm10\right\}\)

  • \(x=0\Rightarrow y^2=\frac{345}{5}=69\)không phải số chính phương
  • \(x=\pm5\Rightarrow3.25+5y^2=345\)

\(\Rightarrow y^2=\frac{345-3.25}{5}=54\)không phải số chính phương

  • \(x=\pm10\Rightarrow3.100+5.y^2=345\)

\(\Rightarrow y^2=\frac{345-3.100}{5}=9\Rightarrow y=\pm3\)

Vậy \(\left(x;y\right)\in\left\{\left(10;3\right);\left(10;-3\right);\left(-10;3\right);\left(-10;-3\right)\right\}\)

24 tháng 11 2016

\(3x^2+5y^2=345=>x^2=\frac{345-5y^2}{3}=>x=\sqrt{\frac{345-5y^2}{3}}\)

MODE 7 (TABLE) nhập \(f\left(x\right)=\sqrt{\frac{345-5X^2}{3}}\)

start -9 end: 9 ,step=1

tìm đc \(\left(x;y\right)=\left(10;3\right);\left(3;10\right);\left(-10;-3\right);\left(-3;-10\right)\)

đây là sử dụng máy tính casio

18 tháng 11 2017

Thay x = 3, y = 5 vào vế trái của phương trình (3) ta được:

VT = 5.3 – 2.5 = 15 – 10 = 5 = VP

Vậy (x; y) = (3; 5) là nghiệm của phương trình (3).

Hệ phương trình đã cho có nghiệm (x; ) = (3; 5)

2 tháng 3 2019

Thay x = -3, y = 31/5 vào vế trái của phương trình (2), ta được:

VT = -3.(-3) + 2.31/5 = 9 + 62/5 = 107/5 ≠ 22 = VP

Vậy (x; y) = (-3; 31/5 ) không phải là nghiệm của phương trình (2).

Hệ phương trình đã cho vô nghiệm.

8 tháng 1 2018

a)

Tìm nghiệm nguyên dương của phương trình,6x + 5y + 18 = 2xy,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

b)

Nhận thấy: x phải là số lẻ. Vì nếu x là số chẵn thì 3x^2 sẽ là số chẵn => 3x^2-4y^2 là số chẵn trong khi 13 là số lẻ 

x là số lẻ => x có dạng x= 2k+1 với k thuộc Z 
thay x=2k+1 vào phương trình ta có: 
3(4k^2+4k+1) - 4y^2 = 13 
<=> 6k^2+6k-2y^2=5 
<=> 6k(k+1) = 5+2y^2 

Dễ thấy vế trái là số chẵn trong khi vế phải là số lẻ => phương trình không có nghiệm nguyên => dpcm