Cùng lúc tại hai điểm A, B cách nhau 10km có hai ô tô xuất phát, chạy cùng chiều nhau trên đường thẳng AB, theo chiều từ A đến B. Vận tốc của ô tô chạy từ A là 54km/h và cyar ô tô chạy từ B là 48km/h.
a) Hỏi sau bao lâu thì ô tô chạy từ A đuổi kịp ô tô chạy từ B?
b) Chỗ gặp nhau cách A bao xa?
Tóm tắt
\(S_{AB}=10km\)
\(V_1=54km\)/\(h\)
\(V_2=48km\)/\(h\)
____________
\(a\)) \(t=?\)
\(b\)) \(S_{AC}=?\)
Giải
a)
Gọi \(t_1;t_2\) lần lượt là thời gian đi của người đi vận tốc 54 km/h và 48 km/h.
Ta có:
\(S_{AC}-S_{BC}=S_{AB}=10\Rightarrow V_1.t_1-V_2.t_2=10\)
Trong đó: \(t_1=t_2=t;V_1=54km\)/\(h;V_2=48km\)/\(h\).
\(\Rightarrow10=54.t-48t=t\left(54-48\right)=6t\Rightarrow t=\frac{10}{6}=\frac{5}{3}\left(h\right)\)
b) \(\Rightarrow S_{AC}=54.\frac{5}{3}=90\left(km\right)\)
Vậy nơi 2 người gặp nhau cách điểm A là 90 km
Cảm ơn nhé