CMR nếu \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\) thì \(\frac{u}{3}=\frac{v}{2}\)
giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
\(\Leftrightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\)
Theo tính chất dãy tỉ số , có :
\(\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{u+2+u-2}{v+3+v-3}=\frac{u+2-u+2}{v+3-v+3}\)
\(\Rightarrow\frac{2u}{2v}=\frac{4}{6}\)
\(\Leftrightarrow\frac{u}{v}=\frac{2}{3}\Leftrightarrow\frac{u}{2}=\frac{v}{3}\)
Ta có:
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
<=> (u+2).(v-3)=(u-2).(v+3)
<=>uv+2v-3u-6=uv-2v+3u-6
<=>2v-3u=3u-2v
<=>2v+2v=3u+3u
<=>4v=6u
<=>2v=3u
<=>\(\frac{u}{2}=\frac{v}{3}\)
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{\left(u+2\right)-\left(u-2\right)}{\left(v+3\right)-\left(v-3\right)}=\frac{4}{6}=\frac{2}{3}\)
\(\Rightarrow\frac{u+2}{v+3}=\frac{2}{3}=\frac{u+2-2}{v+3-3}=\frac{u}{v}\Rightarrow\frac{u}{v}=\frac{2}{3}\)
Cách của bạn kia là cách chứng minh tương đương.Mình nghĩ nó ko hay cho lắm vì phải dựa vào đpcm mà suy luận.
Mình lí luận ngược nha :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{u}{2}=\frac{v}{3}\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\Rightarrow\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
Ta có:
\(\frac{u}{v}=\frac{v}{t}\Rightarrow\frac{u^2}{v^2}=\frac{v^2}{t^2}=\frac{u}{v}.\frac{v}{t}=\frac{u}{t}\) (1)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{u^2}{v^2}=\frac{v^2}{t^2}=\frac{u^2+v^2}{v^2+t^2}\) (2)
Từ (1) và (2) => \(\frac{u^2+v^2}{v^2+t^2}=\frac{u}{t}\left(đpcm\right)\)
Ta có:
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
<=> \(\left(u+2\right)\left(v-3\right)=\left(u-2\right)\left(v+3\right)\)
<=> \(uv+2v-3u-6=uv-2v+3u-6\)
<=> \(2v-3u=3u-2v\)
<=> \(2v+2v=3u+3u\)
<=> \(4v=6u\)
<=> \(2v=3u\)
<=> \(\frac{u}{2}=\frac{v}{3}\)
Ta có:
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
\(\Leftrightarrow\left(u+2\right)\left(v-3\right)=\left(u-2\right)\left(v+3\right)\)
áp dụng t/c DTSBN,ta có:
\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}=\frac{ab+ac-bc-ab+ca+bc}{2-3+4}=\frac{2ac}{3}\)
\(\frac{ab+ac}{2}=\frac{2ac}{3}\Leftrightarrow3ab+3ac=4ac\Leftrightarrow3ab=ac\Leftrightarrow3b=c\Leftrightarrow\frac{b}{1}=\frac{c}{3}\Rightarrow\frac{b}{5}=\frac{c}{15}\)(vì a khác 0)(!)
\(\frac{ca+cb}{4}=\frac{2ac}{3}\Leftrightarrow3ac+3cb=8ac\Leftrightarrow3bc=5ac\Rightarrow3b=5a\Rightarrow\frac{a}{3}=\frac{b}{5}\)(vì c khác 0)(@)
từ (!) và (@) => đpcm
Giải:
Ta có: \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{u}{v}=\frac{2}{3}\)
\(\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u}{2}=\frac{v}{3}\)
Vậy \(\frac{u}{2}=\frac{v}{3}\)
a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)
=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)
=> x + 1 = 0
=> x = -1
b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)
=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)
=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)
=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
=> x - 2021 = 0
=> x = 2021
c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)
=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)
=> \(-\frac{1}{12}x+6=7\)
=> \(-\frac{1}{12}x=1\)
=> x = -12
Hình như đề có bị lộn thì phải