Chứng minh rằng nếu n và n2 + 2 là các số nguyên tố thì n3 + 2 cũng là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do p nguyên tố nên:
+) Xét p = 2 ta có: p2 + 8 = 22 + 8 = 12 là hợp số (loại)
+) Xêt p = 3 ta có: p2 + 8 = 32 + 8 = 17 là nguyên tố (chọn)
+) Xét p > 3 => p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 => p2 + 8 = (3k + 1)2 + 8 = 9k2 + 3k + 1 + 8 = 9k2 + 3k + 9 = 3(3k2 + k + 3) chia hết cho 3 => p2 + 8 là hợp số (loại)
Khi p = 3k + 2 => p2 + 8 = (3k + 2)2 + 8 = 9k2 + 6k + 4 + 8 = 9k2 + 6k + 12 = 3(3k2 + 2k + 4) chia hết cho 3 => p2 + 8 là hợp số (loại)
=> p = 3 để p và p2 + 8 là nguyên tố
Khi đó: p2 + 2 = 32 + 2 = 11 là nguyên tố
Vậy nếu p và p2 + 8 là nguyên tố thì p2 + 2 cũng nguyên tố.
TH1:p<3
+Vì p<3;mà p là số nguyên tố =>p=2.
Với p=2 ta có:p3+2=23+2=8+2=10(là hợp số nên loại)
TH2:p>3
+vì p>3 nên=>p=6k+1 hoặc p=6k+5.
Với p=6k+1 ta có :p3+2=(6k+1)3+2=6k3+1+2=6k3+3:3(là hợp số nên loại)
Với p=6k+5 ta có:p3+2=(6k+5)3+2=6k3+125+2=6k3+127(vì UCLN(6k3;127)=1=>6k3+127 là số nguyên tố nên nhận)
Vậy với p=6k+5 thì p3+2 cũng là số nguyên tố.
Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4.
+ Nếu n2 chia cho 5 dư 1 thì n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * .
Nên n2+4 không là số nguyên tố
+ Nếu n2 chia cho 5 dư 4 thì n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * .
Nên n2+16 không là số nguyên tố.
Vậy n2 ⋮ 5 hay n ⋮ 5
Nếu n > 3 thì vì n là nguyên tố nên n chia cho 3 dư 1 hoặc 2 => \(n=3k\pm1\)
Suy ra \(n^2+2=9k^2+3\) chia hết cho 3. Trái với giả thiết \(n^2+2\) là số nguyên tố.
Vậy n chỉ có thể bằng 3. Khi đó \(n;n^2+2;n^3+2\) lần lượt là \(3;11;29\) đều là số nguyên tố.
etetrttymrturfgdfeeeyeeegguthkxgdzyyyzrzeeerrttytjjmetetetetethehtemeteteetu,o;/o
7lkyuxrxytwtqtwyer