Tính nhanh: 5/2.4.6+5/4.6.8+5/6.8.10+...+5/20.22.24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2}{2.4.6}+\frac{2}{4.6.8}+\frac{2}{6.8.10}+\frac{2}{8.10.12}\)
\(A=\frac{2}{48}+\frac{2}{192}+\frac{2}{480}+\frac{2}{960}\)
\(A=\frac{1}{24}+\frac{1}{96}+\frac{1}{240}+\frac{1}{480}\)
\(A=\frac{20}{480}+\frac{5}{480}+\frac{2}{480}+\frac{1}{480}\)
\(A=\frac{7}{120}\)
Ta nhận thấy
\(\dfrac{1}{n\cdot\left(n+2\right)}-\dfrac{1}{\left(n+2\right)\cdot\left(n+4\right)}\\ =\dfrac{n+4}{n\cdot\left(n+2\right)\cdot\left(n+4\right)}-\dfrac{n}{n\cdot\left(n+2\right)\cdot\left(n+4\right)}\\ =\dfrac{n+4-n}{n\cdot\left(n+2\right)\cdot\left(n+4\right)}\\ =\dfrac{4}{n\cdot\left(n+2\right)\cdot\left(n+4\right)}\)
\(A=\dfrac{4}{2\cdot4\cdot6}+\dfrac{4}{4\cdot6\cdot8}+\dfrac{4}{6\cdot8\cdot10}+...+\dfrac{4}{46\cdot48\cdot50}\\ =\dfrac{1}{2\cdot4}-\dfrac{1}{4\cdot6}+\dfrac{1}{4\cdot6}-\dfrac{1}{6\cdot8}+\dfrac{1}{6\cdot8}-\dfrac{1}{8\cdot10}+...+\dfrac{1}{46\cdot48}-\dfrac{1}{48\cdot50}\\ =\dfrac{1}{2\cdot4}-\dfrac{1}{48\cdot50}\\ =\dfrac{1}{8}-\dfrac{1}{2400}\\ =\dfrac{300}{2400}-\dfrac{1}{2400}\\ =\dfrac{299}{2400}\)
Số nghịch đảo của \(A\) là \(\dfrac{2400}{299}\)