chứng minh 109+108 +107 chia hết cho 555
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : n+18 và n+19 là hai số tự nhiên liên tiếp
nên tích của chúng là một số chẵn
mà một số chẵn luôn chia hết cho hai
vậy nó chia hết cho 2
Đề sai rồi cậu ơi ! Không chứng minh được.
Thế này nhé : Cậu xét số số hạng ủa S được 109 số
Xét 255 bằng 8 số hạng đầu tiên cộng lại ( Từ 2^0 đến 2^7). Nhưng 109 lại không chia hết cho 8 ( nếu chia ra thì dư 5) Nếu như đã dư thì chứng tỏ là sẽ không thể nhóm được thành từng nhóm số chia hết cho 255. Vì thế nên bài này không chia hết được cũng như là đề hơi sai sót :3 Cậu xem lại nhé
a, 810 - 89 - 88 = 88(82 - 8 - 1) = 88.55 chia hết cho 55
b, 76 + 75 - 74 = 74(72 + 7 - 1) = 74.55 = 74.5.11 chia hết cho 11
c, 817 - 279 - 913 = 328 - 327 - 326 = 324(34 - 33 - 32) = 324.45 chia hết cho 45
d, 109 + 108 + 107 = 106(103 + 102 + 10) = 106.1110 = 106.2.555 chia hết cho 555
Ta có
333 chia hết cho 37
=> 333555 chia hết cho 37
Chứng minh tương tự
=> 555333 chia hết cho 37
Vậy 333555 + 555333 chia hết cho 37
a) \(7^{n+4}-7^n\)
\(=7^n\left(7^4-1\right)\)
\(=7^n.2400⋮100\)
b) \(20^5\equiv1\left(mod11\right)\)
\(\Rightarrow20^{15}\equiv1\left(mod11\right)\)
\(\Rightarrow20^5-1\equiv0\left(mod11\right)\)
\(\Rightarrow20^5-1⋮11\)
109+108+107
= 107.102+107.10+107.1
= 107.(102+10+1)
= 107.(100+10+1)
= 107.111 chia hết cho 111 (1)
mà 10 chia hết cho 5 => 107 chia hết cho 5; 108 chia hết cho 5; 109 chia hết cho 5
=> 109+108+107 chia hết cho 5 (2)
từ (1) và (2) => 109+108+107 chia hết cho 555 ( 111.5=555).
=> đpcm