K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2016

Ta có:

\(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Rightarrow\sqrt{\frac{2}{xy}}\le1\Rightarrow xy\ge2\)

\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\)

\(\ge x^2+y=x^2+\frac{y}{2}+\frac{y}{2}\)\(\ge3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\)(Đpcm0

Dấu = khi x=1;y=2

17 tháng 6 2015

\(2x+y=\frac{x}{2}+\frac{x}{2}+\frac{x}{2}+\frac{x}{2}+y\ge5\sqrt[5]{\frac{x^4y}{16}}\)

\(5x^2+5y^2=\frac{5}{4}x^2+\frac{5}{4}x^2+\frac{5}{4}x^2+\frac{5}{4}x^2+5y^2\ge5\sqrt[5]{\frac{5^5}{4^4}x^8y^2}=5^2.\sqrt[5]{\frac{1}{4^4}}.\left(\sqrt[5]{x^4y}\right)^2\)

\(\Rightarrow\sqrt{5x^2+5y^2}\ge5.\sqrt[5]{\frac{1}{2^4}}.\sqrt[5]{x^4y}\)

\(10=2x+y+\sqrt{5x^2+5y^2}\ge10.\sqrt[5]{\frac{1}{16}}\sqrt[5]{x^4y}\)

\(\Rightarrow\sqrt[5]{x^4y}\le\sqrt[5]{16}\)\(\Rightarrow x^4y\le16\)

17 tháng 6 2015

có ai giải giúp mình không

18 tháng 10 2016

ngu ngưoi viet cai de cung sai

19 tháng 9 2019

Ta có: \(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Leftrightarrow\sqrt{\frac{2}{xy}}\le1\Leftrightarrow xy\ge2\)

\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\)

\(\ge x^2+y=x^2+\frac{y}{2}+\frac{y}{2}\ge3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\left(đpcm\right)\)

Dấu "="\(\Leftrightarrow x=1,y=2\)

22 tháng 8 2016

Sử dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2\ge3\left(\frac{xy}{z}.\frac{yz}{x}+\frac{yz}{x}.\frac{zx}{y}+\frac{zx}{y}.\frac{xy}{z}\right)=3\left(x^2+y^2+z^2\right)=3\)

\(\Rightarrow\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge\sqrt{3}\)

22 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(T=\frac{1}{xy}+\frac{1}{xz}\ge\frac{\left(1+1\right)^2}{xy+xz}=\frac{4}{xy+xz}\)

Từ \(x+y+z=3\Rightarrow y+z=4-x\)

\(\Rightarrow T\ge\frac{4}{xy+xz}=\frac{4}{x\left(y+z\right)}=\frac{4}{x\left(4-x\right)}=\frac{4}{-x^2+4x}\)

Lại có: \(-x^2+4x=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\le4\)

\(\Rightarrow T\ge\frac{4}{-x^2+4x}\ge\frac{4}{4}=1\)

Đẳng thức xảy ra khi \(x=2;y=z=1\)

23 tháng 7 2018

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{4}{x\left(y+z\right)}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=1\).

6 tháng 4 2021

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left(x\cdot1+y\cdot1\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2\Rightarrow x+y\le\sqrt{2}\)

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left(x\sqrt{1+y}+y\sqrt{1+x}\right)^2\le\left(x^2+y^2\right)\left(1+y+1+x\right)=x+y+2=2+\sqrt{2}\)

\(\Rightarrow x\sqrt{y+1}+y\sqrt{x+1}\ge\sqrt{2+\sqrt{2}}\)

Dấu = xảy ra khi \(x=y=\dfrac{1}{\sqrt{2}}\)

pro ghê ta yeu