Chứng minh rằng M < 6 biết:
M = \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{62}+\frac{1}{63}\)
Giúp mk nhé Mai.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{123}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{122}\right)\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-2\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{61}\right)\)
\(=\frac{1}{62}+\frac{1}{63}+\frac{1}{64}+...+\frac{1}{123}\)
1/2+1/3+1/4+...+1/63>1/31+1/31+...+1/31(62 số hạng 1/31)
hay 1/2+1/3+1/4+...+1/63>62 x 1/31
nên 1/2+1/3+1/4+...+1/63>2(dpcm)
B < 1+1+1/2.3+1/3.4+...+1/62.63
B < 2+(1/2-1/3+1/3-1/4+...+1/62-1/63)
B < 2+(1/2-1/63)
B < 2+61/126 suy ra B < 2 và 6/126
Mà 2 + 61/126 <6
Suy ra B< 2+6/126<6 suy tiếp B < 6
A=1+(1/2 + 1/3 + 1/4)+(1/5 + 1/6 + 1/7 + 1/8)+(1/9+...+1/16)+(1/17+...+1/32)+(1/33+...+1/64)
A>1+(1/2 + 1/4 + 1/4)+(1/8+ 1/8+ 1/8+ 1/8)+(1/16+1/16+...+1/16)+(1/64+...+1/64)
A>1 + 1 + 1/2 + 1/2 + 1/2+ 1/2
A>4
\(=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+...+\frac{1}{8}\right)+\left(\frac{1}{9}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+...+\frac{1}{32}\right)+\left(\frac{1}{33}+...+\frac{1}{64}\right)\)
\(=1+\frac{1}{2}+\frac{1}{4}.2+\frac{1}{8}.4+\frac{1}{16}.8+\frac{1}{32}.16+\frac{1}{64}.32\)
\(=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
\(=1+\frac{1}{2}.6\)
\(=1+3\)
\(=4\)
~~ Bố thí cái li.ke ~~
Ta có : \(S=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)
Ta có:
\(S=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)
\(=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)
Bài toán phụ 1:
Ta có:
1/13<1/12
1/14<1/12
1/15<1/12
=>1/13+1/14+1/15<1/12x3=1/4 (1)
Bài toán phụ 2:
Ta có:
1/61<1/60
1/62<1/60
1/63<1/60
=>1/61+1/62+1/63<1/60x3=1/20 (2)
Từ (1) và (2), ta có:
1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/5+1/4+1/20
1/5+1/13+1/14+1/15+1/61+1/62+1/63<4/20+5/20+1/20
1/5+1/13+1/14+1/15+1/61+1/62+1/63<9/20<1/2
=>1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/2
\(M=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{62}+\frac{1}{63}\)
\(M=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}\right)+\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{63}\right)\)
\(M< 1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+\frac{1}{16}.16+\frac{1}{32}.32\)
\(M< 1+1+1+1+1+1\)
\(M< 1.6=6\left(đpcm\right)\)
đpcm là điều phải chứng minh đúng không bn soyeon_Tiểubàng giải?