1, chung minh a3 + 3a3 + 2a +2 khong la so chinh phuong
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left[n\left(n+3\right)\right].\left[\left(n+1\right)\left(n+2\right)\right]=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
ko là số cp
gọi 5 số tự nhiên liên tiếp là a,a+1,a+2,a+3,a+4
ta có
a+a+1+a+2+a+3+a+4
= 5a +10
= 5(a+2) không thể là số chính phương vì không phải là 1 bình phương của 1 số tự nhiên
Vì 2A = 2.1.3.5.....2011
Dễ thấy 2A chia hết cho 2 mà không chia hết cho 4
=> 2A không là bình phương của 1 số nguyên nào
VÌ 2A là chẵn => 2A - 1 lẻ, mà 2A- 1 ko chia hết cho 3, 5, 7,...,2011
( vì 2A chia hết cho các số đó)
Tương tự vậy ta thấy ngay 2A-1, 2A không là bình phương cảu bất kì số nguyên nào
Bài này rất đơn giản dùng tính chất quan trọng của số chính phương là:
Một số chính phương khi chia 3 chỉ dư 0 hoặc 1
Chứng minh bổ đề:
Ta có : a là số nguyên nên a trong ba dạng: 3k ; 3k+1 hoăc 3k+2 với k nguyên
Với a=3k thì \(a^2=9k^2\)chia 3 dư 0
Với a=3k+1 thì \(a^2=\left(3k+1\right)^2=9k^2+6k^2+1\) chia 3 dư 1
Với a=3k+2 thì \(a^2=\left(3k+2\right)^2=9k^2+12k^2+4\) chia 3 dư 1
Bài giải
Ta đặt: \(A=a^3+3a^2+2a+2=a\left(a^2+3a+2\right)+2=\left(a+1\right)\left(a+2\right)a+2\)
Vì a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 3
nên a(a+1)(a+2) chia hết cho 3 nên A chia 3 dư 2
Vậy A không là số chính phương
khó quá , s zúp đc