Cho x,y thuộc R thỏa mãn \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)
Tính N = x2 + y2 (Áp dụng BĐT cô-si nhak)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C.hóa \(x+y=1\) và dùng C-S:
\(VT^2\le\frac{2x}{\left(y+1\right)^2}+\frac{2y}{\left(x+1\right)^2}\le\frac{8}{9}=VP^2\)
\(BDT\Leftrightarrow\frac{x}{\left(2-x\right)^2}+\frac{y}{\left(2-y\right)^2}\le\frac{4}{9}\left(1\right)\)
Ta có BĐT phụ \(\frac{x}{\left(2-x\right)^2}\le\frac{20}{27}x-\frac{4}{27}\)
\(\Leftrightarrow-\frac{\left(2x-1\right)^2\left(5x-16\right)}{27\left(x-2\right)^2}\le0\) *Đúng*
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT_{\left(1\right)}\le\frac{20}{27}\left(x+y\right)-\frac{4}{27}\cdot2=\frac{4}{9}=VP_{\left(1\right)}\)
"=" khi \(x=y=\frac{1}{2}\)
áp dụng BĐT buniacopxki,ta có:\(\left(x\sqrt{1-y^2}+y\sqrt{1-x^2}\right)^2\le\left(x^2+y^2\right)\left(1-y^2+1-x^2\right)=\left(x^2+y^2\right)\left(2-\left(x^2+y^2\right)\right)\)
↔\(1\le\left(x^2+y^2\right)\left(2-\left(x^2+y^2\right)\right)\)
Đặt x2+y2=a(a>=0),ta có:\(1\le a\left(2-a\right)\)↔a2-2a+1\(\ge\)0 hay\(\left(a-1\right)^2\ge0\)
dấu = xảy ra khi a=1 do đó x2+y2=1