Cho tam giác ABC cân tại A.Qua C vẽ 1 đường thẳng vuông góc AC, qua A vẽ 1 đường thẳng vuông góc AB. Hai đường thẳng đó cắt nhau tại D, BC cắt AD tại M. Chứng minh tam giác CDM cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABD và tam giác ACD
có AD chung
góc ABD=góc ACD=90 độ
AB=AC ( Vì tam giác ABC cân tại A)
suy ra tam giác ABD =tam giác ACD (cạnh huyền-cạnh góc vuông)
suy ra BD=CD (hai cạnh tương ứng)
Câu hỏi của Bảo Châu Trần - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo lời giải tại đây nhé.
Ta có:
Tam giác ABC cân tại A => góc ABC = góc ACB
Mà góc ABD = góc ACD (=90độ) => góc ABD - góc ABC = góc ACD - góc ACB <=> góc DBC = góc DCB
=> Tam giác DBC cân ở D => DB=DC
b. gỌI I là giao điểm của AD và BC
Ta có: tam giác ABD = tam giác ACD (c-c-c)
=> góc BAD = góc CAD <=> góc BAI = góc CAI
=> tam giác BAI = tam giác CAI (c-g-c) => BI=IC
=> AI là trung trực của BC
CMTT có: DI là trung trực BC
=> Đường thẳng AD là trung trực của BC
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(Hai cạnh tương ứng)
a) Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC(ΔABC cân tại A)
Do đó: ΔABD=ΔACD(cạnh huyền-cạnh góc vuông)
b) Ta có: ΔABD=ΔACD(cmt)
nên \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)
mà tia AD nằm giữa hai tia AB,AC
nên AD là tia phân giác của \(\widehat{BAC}\)