K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

Sơ đồ minh họa:

A K B D C E F M N

Phân tích: Ta thấy tam giác \(KDC\) và tứ giác \(MNCD\) có phần chung là tứ giác \(EFCD\).

Vậy để chứng tỏ: \(S_{KEF}=S_{MED}+S_{FNC}\) ta cần chứng tỏ \(S_{KDC}=S_{MNCD}\)

Giải tóm tắt:

\(S_{KDC}=DC\times BC\div2=\frac{1}{2}\times S_{ABCD}\)                     (1)

Vì \(ABCD\) là hình chữ nhật nên tứ giác \(MNCD\) là hình thang và có diện tích là:

\(S_{MNCD}=\left(MD+NC\right)\times DC\div2=\)

             \(=AD\times DC\div2=\frac{1}{2}\times S_{ABCD}\)                  (2)

Từ (1) và (2) ta có: \(S_{KDC}=S_{MNCD}\)

Tam giác \(KDC\) và hình thang \(MNCD\) có phần chung là tứ giác \(EFCD\), suy ra:

\(S_{KEF}=S_{MED}+S_{FNC}\)

15 tháng 9 2019

S(KCD) = CD x BC X 1/2 = 1/2 S(ABCD)
-S(ABNM) = S(CDMN) = 1/2 s(ABCD) ( Vì AM = NC, DM = BN, AB = CD)
=> S(ABNM) = S(KCD) 
=> S(CDEF) = S(AKEM) + S(BKFN) ( cùng chung S(KEF)
- Mà S(ABNM) = S(CDMN) => S(KEF) = S(DME) + S(CNF) ( cùng bớt S(CDEF) = S(AKEM) + S(BKFN))

9 tháng 8 2018

-S(KCD) = CD x BC X 1/2 = 1/2 S(ABCD) -S(ABNM) = S(CDMN) = 1/2 s(ABCD) ( Vì AM = NC, DM = BN, AB = CD) => S(ABNM) = S(KCD) => S(CDEF) = S(AKEM) + S(BKFN) ( cùng chung S(KEF) - Mà S(ABNM) = S(CDMN) => S(KEF) = S(DME) + S(CNF) ( cùng bớt S(CDEF) = S(AKEM) + S(BKFN))

23 tháng 1 2016

giải được cho 10 ****

31 tháng 1 2016

nghỉ tết rùi mà vẫn hok ak???

cao nguyễn thu uyên Đã nghỉ đâu == 

16 tháng 12 2019

Bai 1

Bo de :  \(\Delta ABC\) trung tuyen AD 

\(\Rightarrow S_{ADB}=S_{ADC}\)

cai nay ban tu chung minh nha

Ap dung bo de va bai nay => \(S_{MNPQ}=S_{MQP}+S_{MNP}=\frac{1}{3}S_{MDC}+\frac{1}{3}S_{ABP}\)

ta phai chung minh \(S_{MDC}+S_{ABP}=S_{ABCD}\)

That vay co \(S_{AMP}=S_{AMD},S_{MBP}=S_{MBC}\)

=> \(S_{ABP}+S_{MDC}=S_{ADM}+S_{MDC}+S_{MBC}=S_{ABCD}\)

=> dpcm

16 tháng 12 2019

Hình như sai ở dòng thứ 2 từ dưới lên trên ấy