K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2016

D=\(\frac{1}{1^2}\)-\(\frac{1}{2^2}\)+\(\frac{1}{2^2}\)-\(\frac{1}{3^2}\)+...+\(\frac{1}{9^2}\)-\(\frac{1}{10^2}\)

D=\(\frac{1}{1^2}\)-\(\frac{1}{10^2}\)

D=\(1\)-\(\frac{1}{100}\)

D=\(\frac{99}{100}\)

4 tháng 7 2017

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+.......+\frac{19}{9^2.10^2}\)

\(A=\frac{3}{1.4}+\frac{5}{4.9}+.......+\frac{19}{81.100}\)

\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+.......+\frac{1}{81}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}< \frac{100}{100}=1\)

\(\Rightarrow A< 1\)

4 tháng 7 2017

mik nghĩ câu trả lời của nghĩa đúng nhưng mà 2 bước cuối phải thay bằng vì 1-^100 < 1 nên A < 1

23 tháng 9 2018

\(C=\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+....+\frac{99.100-1}{100!}\)

\(\Rightarrow C=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(\Rightarrow C=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(\Rightarrow C=\left(2+\frac{3.4}{4!}+\frac{4.5}{5!}+....+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{10!}\right)\)

\(\Rightarrow C=\left(2+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(\Rightarrow C=2-\frac{1}{99!}-\frac{1}{100!}< 2\Rightarrow C< 2\)

\(b,C=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+....+\frac{19}{9^2.10^2}\)

\(\Rightarrow C=\frac{3}{\left(1.2\right)\left(1.2\right)}+\frac{5}{\left(2.3\right)\left(2.3\right)}+...+\frac{19}{\left(9.10\right)\left(9.10\right)}\)

\(\Rightarrow C=\frac{3}{1.2}.\frac{1}{1.2}+\frac{5}{2.3}.\frac{1}{2.3}+....+\frac{19}{9.10}.\frac{1}{9.10}\)

\(\Rightarrow C=\left(1+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}+\frac{1}{3}\right)\left(\frac{1}{2}-\frac{1}{3}\right)+....+\left(\frac{1}{9}+\frac{1}{10}\right)\left(\frac{1}{9}-\frac{1}{10}\right)\)

\(\Rightarrow C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+....+\frac{1}{81}-\frac{1}{90}\)

\(\Rightarrow C=1-\frac{1}{90}< 1\Rightarrow C< 1\)

28 tháng 6 2017

CÂU 1 = -59/111

 CÂU 2 = 11/63

     

28 tháng 6 2017

cảm ơn kết quả thì mik b òi nhưng mik cần cách làm

12 tháng 3 2016

Ta có:(ĐỀ)=3/1.4+5/4.9+7/9.16+.....+19/81.100

                 =1/1.4 +1/4.9 +1/9.16+....+1/81.100

                =1-1/4+1/4-1/9+1/9-1/16+.....+1/81-1/100

                =1-1/100<1  =>B<1

MK ĐẦU TIÊN NHA BẠN!

12 tháng 3 2016

\(B=\frac{3^2}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.....+\frac{19}{9^2.10^2}\)

\(B=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+.....+\frac{10^2-9^2}{9^2.10^2}\)

\(B=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)

\(B=\frac{1}{1^2}-\frac{1}{10^2}=1-\frac{1}{10^2}<1\left(đpcm\right)\)

26 tháng 6 2019

\(\left(1\cdot2\right)^{-1}+\left(2\cdot3\right)^{-1}+\cdot\cdot\cdot+\left(9\cdot10\right)^{-1}\)

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

26 tháng 6 2019

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

27 tháng 2 2016

\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{9^2}{9.10}=\frac{1^2.2^2.3^2...9^2}{1.2.2.3.3.4.4...9.10}=\frac{1.2^2.3^2...9^2}{1.2^2.3^2.4^2...10^2}=\frac{1}{10^2}=\frac{1}{100}\)

27 tháng 2 2016

Ra 1/10 đó bạn

23 tháng 12 2015

\(VT=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+.....+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+......+\frac{1}{9^2}-\frac{1}{10^2}\)

\(=1-\frac{1}{10^2}=\frac{99}{100}<1\)

19 tháng 1 2016

B cho mình hỏi hình như thiếu dấu ngoặc

19 tháng 1 2016
  • Giải ra đúng thì x=2