K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

độ dài ba đường cao sẽ tương ứng với 4;6;8

28 tháng 11 2021

\(a,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c<120)

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\\ \Rightarrow \begin{cases} a=10.3=30\\ b=10.4=40\\ c=10.5=50 \end{cases} \)

Vậy ...

\(b,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c)

\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{80}{4}=20\\ \Rightarrow \begin{cases} a=20.3=60\\ b=20.5=100\\ c=20.7=140 \end{cases}\\ \Rightarrow P=a+b+c=300(cm)\)

Gọi độ dài 3 cạnh của tam giác lần lượt là x, y, z (đơn vị: m)

Ba cạnh tỉ lệ với 3; 4; 5 => \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Cạnh lớn nhất hơn cạnh nhỏ nhất 6m => z - x = 6.

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{z-x}{5-3}=\frac{6}{2}=3\)

\(\frac{x}{3}=3\Rightarrow x=3.3=9\)

\(\frac{y}{4}=3\Rightarrow y=3.4=12\)

\(\frac{z}{5}=3\Rightarrow z=3.5=15\)

Vậy, độ dài mỗi cạnh của tam giác lần lượt là 9; 12; 15 (m)

@Nghệ Mạt

#cua

4 tháng 2 2020

Gọi độ dài mỗi cạnh của tam giác lần lượt là x(cm),y(cm),z(cm) . Theo đề bài ta có :

\(x:y:z=3:4:6\)hay \(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}\)và x + y + z = 65

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{x+y+z}{3+4+6}=\frac{65}{13}=5\)

=> \(\hept{\begin{cases}\frac{x}{3}=5\\\frac{y}{4}=5\\\frac{z}{6}=5\end{cases}}\Rightarrow\hept{\begin{cases}x=15\\y=20\\z=30\end{cases}}\)

4 tháng 2 2020

gọi độ dài mỗi cạnh lần lượt là A, B, C

Ta có: \(\frac{A}{3}=\frac{B}{4}=\frac{C}{6}=\frac{A+B+C}{3+4+6}=\frac{65}{13}=5\)

Độ dài mỗi cạnh là:

C1:\(\frac{A}{3}=5\Rightarrow A=5\cdot3=15cm\)

C2:\(\frac{B}{4}=5\Rightarrow B=5\cdot4=20cm\)

C3:\(\frac{C}{6}=5\Rightarrow C=5\cdot6=30cm\)

\(\Rightarrow\)Độ dài lần lượt của ba cạnh của hình tam giác là 15cm, 20cm, 30cm

Gọi hai cạnh góc vuông cần tìm là AB,AC và cạnh huyền là BC(Điều kiện: AB>0; AC>0; BC>0)

Theo đề, ta có: AB:AC=3:4 và AB+AC+BC=24(cm)

\(\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{AB}{3}=\dfrac{AC}{4}\)

Đặt \(\dfrac{AB}{3}=\dfrac{AC}{4}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=3k\\AC=4k\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC^2=\left(3k\right)^2+\left(4k\right)^2=25k^2\)

hay BC=5k

Ta có: AB+AC+BC=24cm(gt)

\(\Leftrightarrow3k+5k+4k=24\)

\(\Leftrightarrow12k=24\)

hay k=2

⇔AB=6cm; AC=8cm

Vậy: Độ dài hai cạnh góc vuông cần tìm là 6cm và 8cm

Tìm được độ dài các cạnh của tam giác lần lượt là:

6 cm, 8 cm, 10 cm.

13 tháng 1 2021

Gọi a,b,c là độ dài 3 cạnh của tam giác đó

Theo đề ta có:

\(\dfrac{a}{3}=\dfrac{b}{4}\)

Đặt: \(\dfrac{a}{3}=\dfrac{b}{4}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\end{matrix}\right.\)

Tam giác vuông. Áp dụng định lí Pitago ta có: 

a2 + b2 = c2

=> (3k)2 + (4k)2 = c2

=> 9k2 + 16k2 = c2

=> 25k2 = c2

=> c = 5k

Theo đề ta có:

a + b + c = 24

=> 3k + 4k + 5k = 24

=> 12k = 24

=> k = 2

Mà: \(\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=3.2=6\left(cm\right)\\b=4.2=8\left(cm\right)\\c=5.2=10\left(cm\right)\end{matrix}\right.\)

Vậy: Độ dài 3 cạnh của tam giác đó là 6, 8, 10

15 tháng 6 2017

Gọi độ dài của các cạnh tam giác là a, b, c tỉ lệ với 3, 4, 5

Theo bài ra ta có:

\(a:b:c=3:4:5\) và c - a = 6

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{c-a}{5-3}=\dfrac{6}{2}=3\)

Do đó: \(\Rightarrow\left\{{}\begin{matrix}3.3=9\\4.3=12\\5.3=15\end{matrix}\right.\)

Vậy:...

11 tháng 7 2017

Gọi độ dài các cạch của tam giác là a,b,c với các cạnh là 3,4,5

Theo đề ta có:

a:b:c=3:4:5 và c-a =6

Áp dụng tính chất của dãy số bangừ nhau ta có:

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{c-a}{5-3}=\dfrac{6}{2}=3\)

Vậy ta có như sau:

\(\dfrac{a}{3}=3\Rightarrow a=9\)

\(\dfrac{b}{4}=3\Rightarrow b=12\)

\(\dfrac{c}{5}=3\Rightarrow c=15\)