TÌm số tự nhiên n có tận cùng bằng 2 biết rằng n ; 2n ; 3n đều là số có 3 chữ số và 3 chữ số đó khác nhau và khác 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cristiano Ronaldoĩ 17/05/2015 lúc 10:21
Báo cáo sai phạm
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư khi chia cho 9. Tổng các chữ số của x ; của 2x; của 3x cộng lại là 1 + 2+ ……+ 9 = 45, chia hết cho 9, do đó tổng x + 2x + 3x cũng chia hết cho 9, tức là 6x chia hết cho 9 => x chia hết cho 3
Do x có tận cùng bằng 2 nên 2x tận cùng bằng 4 và 3x tận cùng bằng 6
Gọi a và b là các chữ số hàng trăm, hàng chục của 3x thì
a,b∈{1;3;5;7;8;9} (Trừ các số 2, 4, 6) mặt khác x chia hết cho3 nên 3x chia hết cho 9.
Tức là: abc chia hết cho 9 do đó a +b + 6 chia hết cho 9 chú ý : 4
Ta có: \(n^2-n⋮5\Rightarrow n\left(n-1\right)⋮5\)
Do đó \(\orbr{\begin{cases}n⋮5\\n-1⋮5\end{cases}}\)
Suy ra n có tận cùng là 0 ; 5 hoặc n-1 có tận cùng là 0, 5
Suy ra n có tận cùng là 0, 5 hoặc 1, 6
Vì n chia hết cho 2
nên n có tận cùng là 0 hoặc là 6
gợi ý:
n^2-2n có chữ số tc là 0 hoặc 5
Vì n chia hết cho 2 =>n có cs tận cùng là : 0,2,4,6,8
xét từng Th
a, Xét : 6n-n = 5n
Vì n chẵn nên 5n có tận cùng là 0
=> n và 6n có chữ số tận cùng giống nhau
c, Xét : n^5-n = n.(n^4-1) = n.(n^2-1).(n^2+1) = (n-1).n.(n+1).(n^2-4+5) = (n-2).(n-1).n.(n+1).(n+2) + 5.(n-1).n.(n+1)
Ta thấy : n-2;n-1;n;n+1;n+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )
Lại có : (n-1).n.(n+1) chia hết cho 2 nên 5.(n-1).n.(n+1) chia hết cho 10
=> n^5-n chia hết cho 10
=> n^5-n có tận cùng là 0
=> n^5 và n có chữ số tận cùng như nhau
Tk mk nha
Ta có: n có tận cùng là CS chẵn
=>n chia hết cho 2
=>5n chia hết cho 10
=>5n có CSTC là CS 0
=>5n+n có CSTN là n
=>6n và n có cùng 1 CSTC (đpcm)
n2-n = n*(n-1),
TH1 : n = 0, thỏa mãn, TH2 n-1 chia hết cho 5, suy ra n =6, còn n=1 thì ko thỏa mãn.
a) Cách 1. Xét từng trường hợp n tận cùng bằng 0, 2, 4, 6, 8 thì 6n tận cùng cũng như vậy.
Cách 2. Xét hiệu 6n−n=5n chia hết cho 10 vì n chẵn.b) Nếu n tận cùng bằng 1 hoặc 9 thì n2 tận cùng bằng 1, do đó n4 tận cùng bằng 1. Nếu n tận cùng bằng 3 hoặc 7 thì n2 tận cùng bằng 9, do đó n4 tận cùng bằng 1. Nếu n tận cùng bằng 4 hoặc 6 thì n2 tận cùng bằng 6, do đó n4 tận cùng bằng 6. Nếu n tận cùng bằng 2 hoặc 8 thì n2 tận cùng bằng 4, da) n là số chẵn
\(\Rightarrow\) n = 2k
\(\Rightarrow\) 6n = 12k
Vì 12 có tận cùng như 2 nên 12k có tận cùng như 2k.
\(\Rightarrow\) n và 6n có tận cùng như nhau
\(\Rightarrow\) ĐPCM
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư khi chia cho 9. Tổng các chữ số của x ; của 2x; của 3x cộng lại là 1 + 2+ ……+ 9 = 45, chia hết cho 9, do đó tổng x + 2x + 3x cũng chia hết cho 9, tức là 6x chia hết cho 9 => x chia hết cho 3
Do x có tận cùng bằng 2 nên 2x tận cùng bằng 4 và 3x tận cùng bằng 6
Gọi a và b là các chữ số hàng trăm, hàng chục của 3x thì
a,b∈{1;3;5;7;8;9} (Trừ các số 2, 4, 6) mặt khác x chia hết cho3 nên 3x chia hết cho 9.
Tức là: abc chia hết cho 9 do đó a +b + 6 chia hết cho 9 chú ý : 4