Câu II (2,0 điểm) Phân tích các đa thức sau thành nhân tử:
a) x2 – 3x + xy – 3y
b) x3 + 10x2 + 25x – xy2
c) x3 + 2 + 3(x3 – 2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a) 8x^2 - 8xy - 4x + 4y`
`= 8x ( x - y ) - 4 ( x - y )`
`= ( x - y ) ( 8x - 4 )`
__________________________
`b) x^3 + 10x^2 + 25x - xy^2`
`=x ( x^2 + 10x + 25 ) - xy^2`
`= x ( x + 5 )^2 - xy^2`
`= x [ ( x + 5 )^2 - y^2 ]`
`= x ( x + 5 - y ) ( x + 5 + y )`
________________________________
`c) x^2 + x - 6`
`= x^2 + 3x - 2x - 6`
`= x ( x + 3 ) - 2 ( x + 3 )`
`= ( x + 3 ) ( x - 2 )`
_______________________________
`d) 2x^2 + 4x - 16`
`= 2x^2 - 4x + 8x - 16`
`= 2x ( x - 2 ) + 8 ( x - 2 )`
`= ( x - 2 ) ( 2x + 8 )`
a) x2 + xy –x – y = x(x + y) – (x + y) = (x + y)(x -1 ).
b) a2 – b2 + 8a + 16 = (a2 + 8a + 16) – b2 = (a + 4)2 – b2
= (a + 4 – b)(a + 4 + b).
tui chỉ làm dc này thui
a) x3+4x-5 = x3-x2+x2+4x-5=(x3-x2)+(x2-x)+(5x-5)=x2(x-1)+x(x-1)+5(x-1)=(x2+x+5)(x-1)
b) x3-3x2+4=x3-2x2-x2+4=(x3-2x2)-(x2-4)=x2(x-2)-(x-2)(x+2)=(x2-x+2)(x-2)
c) x3+2x2+3x+2=x3+x2+x2+x+2x+2=(x3+x2)+(x2+x)+(2x+2)=x2(x+1)+x(x+1)+2(x+1)=(x2+x+2)(x+1)
d) bạn xem lại đề đúng ko
e) (x2+3x)2-2(x2+3x)-8=x4+6x3+9x2-2x2-6x-8=x4+6x3+7x2-6x-8=x4-x3+7x3-7x2+14x2-14x+8x-8=(x4-x3)+(7x3-7x2)+(14x2-14x)+(8x-8)=x3(x-1)+7x2(x-1)+14x(x-1)+8(x-1)=(x3+7x2+14x+8)(x-1)=(x3+x2+6x2+6x+8x+8)(x-1)=\(\left[\left(x^3+x^2\right)+\left(6x^2+6x\right)+\left(8x+8\right)\right]\left(x-1\right)\)\(=\left[x^2\left(x+1\right)+6x\left(x+1\right)+8\left(x+1\right)\right]\left(x-1\right)\)\(=\left(x^2+6x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left(x^2+2x+4x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\left(x+1\right)\left(x-1\right)\)\(=\left[x\left(x+2\right)+4\left(x+2\right)\right]\left(x+1\right)\left(x-1\right)\)=\(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)
f) (x2+4x+10)2-7(x2+4x+11)+7=(x2+4x+10)2-\(\left[7\left(x^2+4x+11\right)-7\right]\)\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)\)\(=\left(x^2+4x+10\right)\left(x^2+4x+3\right)\)
a) Ta có: \(x^3+4x-5\)
\(=x^3-x+5x-5\)
\(=x\left(x-1\right)\left(x+1\right)+5\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+5\right)\)
b) Ta có: \(x^3-3x^2+4\)
\(=x^3+x^2-4x^2+4\)
\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-4x+4\right)\)
\(=\left(x+1\right)\cdot\left(x-2\right)^2\)
c) Ta có: \(x^3+2x^2+3x+2\)
\(=x^3+x^2+x^2+x+2x+2\)
\(=x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+2\right)\)
d) Ta có: \(x^2+2xy+y^2+2x+2y-3\)
\(=\left(x+y\right)^2+2\left(x+y\right)-3\)
\(=\left(x+y\right)^2+3\left(x+y\right)-\left(x+y\right)-3\)
\(=\left(x+y\right)\left(x+y+3\right)-\left(x+y+3\right)\)
\(=\left(x+y+3\right)\left(x+y-1\right)\)
a: \(=x\left(x-3\right)-4y\left(x-3\right)\)
=(x-3)(x-4y)
d: \(=\left(x-2\right)\left(x+2\right)+\left(x+2\right)^2\)
\(=\left(x+2\right)\left(x-2+x+2\right)\)
=2x(x+2)
\(a,=x\left(x-3\right)-4y\left(x-3\right)=\left(x-4y\right)\left(x-3\right)\\ b,=\left(x-1\right)\left(x^2+x+1\right)-4x\left(x-1\right)=\left(x-1\right)\left(x^2-3x+1\right)\\ c,=\left(x-y\right)\left(1-a\right)\\ d,=\left(x-2\right)\left(x-2+x+2\right)=2x\left(x-2\right)\\ e,=x^2\left(x+y\right)-xz\left(x+y\right)=x\left(x-z\right)\left(x+y\right)\\ f,=\left(x-y-2\right)\left(x+y\right)\)
Lời giải:
a.
$3x^2+xy-4y^2=(3x^2-3xy)+(4xy-4y^2)=3x(x-y)+4y(x-y)=(x-y)(3x+4y)$
b.
$x^8-5x^4+4=(x^8-x^4)-(4x^4-4)$
$=x^4(x^4-1)-4(x^4-1)=(x^4-1)(x^4-4)$
$=(x^2-1)(x^2+1)(x^2-2)(x^2+2)$
$=(x-1)(x+1)(x^2+1)(x-\sqrt{2})(x+\sqrt{2})(x^2+2)$
c.
$x^3+3x^2+3x-7=(x^3+3x^2+3x+1)-8$
$=(x+1)^3-2^3=(x+1-2)[(x+1)^2+2(x+1)+4]$
$=(x-1)(x^2+4x+7)$
a) \(3x^2+xy-4y^2=3x^2-3xy+4xy-4y^2\)
\(=3x(x-y)+4y(x-y)=(3x+4y)(x-y)\)
b)\(x^8-5x^4+4=x^8-x^4-4x^4+4\)
\(=x^2(x^4-1)-4(x^4-1)=(x^2-4)(x^4-1)\)
\(=(x-2)(x+2)(x^2-1)(x^2+1)=(x-2)(x+2)(x-1)(x+1)(x^2+1)\)
c)\(x^3+3x^2+3x-7=x^3+3x^2+3x+1-8\)
\(\left(x+1\right)^3-\sqrt{2}^3=\left(x+1-\sqrt[]{2}\right)\left(\left(x+1\right)^2+2\sqrt{2}x+2\right)\)
c: =(x-2)(x-4)
b: \(=x\left(x^2+2xy+y^2-4\right)\)
=x(x+y-2)(x+y+2)
a) \(x^2-9+2\left(x+3\right)=\left(x-3\right)\left(x+3\right)+2\left(x+3\right)=\left(x+3\right)\left(x-3+2\right)=\left(x+3\right)\left(x-1\right)\)
b) \(x^2-10x+25-3\left(x-5\right)=\left(x-5\right)^2-3\left(x-5\right)=\left(x-5\right)\left(x-5-3\right)=\left(x-5\right)\left(x-8\right)\)
c) \(x^3-4x^2+3x=x\left(x^2-4x+3\right)=x\left(x-1\right)\left(x-3\right)\)
a) \(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)
b) \(=\left(x^2+2x\right)+\left(10x+20\right)=x\left(x+2\right)+10\left(x+2\right)=\left(x+2\right)\left(x+10\right)\)
c) đặt \(x^2+x+1=t\)
\(\left(x^2+x+1\right)\left(x^2+x+4\right)+2=t\left(t+3\right)+2=t^2+3t+2=\left(t^2+t\right)+\left(2t+2\right)=t\left(t+1\right)+2\left(t+1\right)=\left(t+1\right)\left(t+2\right)=\left(x^2+x+2\right)\left(x^2+x+3\right)\)
`a)x^3-8x^2+16x`
`=x(x^2-8x+16)`
`=x(x-4)^2`
`b)x^2+4y^2+2x-4y-4xy-24`
`=(x-2y)^2+2(x-2y)-24`
`=(x-2y)^2-4(x-2y)+6(x-2y)-24`
`=(x-2y-4)(x-2y+6)`
`c)x^4+x^3-x^2-2x-2`
`=x^4-2x^2+x^3-2x+x^2-2`
`=x^2(x^2-2)+x(x^2-2)+x^2-2`
`=(x^2-2)(x^2+x+1)`
a) Ta có: \(x^2-3x+xy-3y\)
\(=x\left(x-3\right)+y\left(x-3\right)\)
\(=\left(x-3\right)\left(x+y\right)\)
b) Ta có: \(x^3+10x^2+25x-xy^2\)
\(=x\left(x^2+10x+25-y^2\right)\)
\(=x\left(x+5-y\right)\left(x+5+y\right)\)
c) Ta có: \(x^3+2+3\left(x^3-2\right)\)
\(=4x^3-4\)
\(=4\left(x-1\right)\left(x^2+x+1\right)\)