K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2015

x2 + y2 + 2x + 2y = 11 <=> (x2 + 2x) + (y2 + 2y) = 11 <=> x(x + 2) + y(y +2) = 11

xy(x+2)(y+2) = m <=> [x(x+2)].[y(y+2)] = m

đặt a = x(x+2); b = y(y +2)

Khi đó ta có hệ phương trình: a + b = 11; ab = m

Theo hệ thức Vi ét đảo => a; b là ngiệm của phương trình t2 - 11t + m = 0   (*)

a) khi m = 24 .

(*) <=> t2 - 11t + 24 = 0 <=> t- 3t - 8t + 24 = 0 <=> (t - 3).(t - 8) = 0 <=> t = 3 hoặc t = 8

=> a = 8 ; b = 3 hoặc a = 3; b = 8

+) a =8 => x(x+2) = 8 => x2 + 2x - 8 = 0 => (x+1)2 = 9 <=> x + 1 = 3 hoặc x+ 1 = -3 <=> x = 2 hoặc x = -4

b = 3 => y(y +2) = 3 <=> y+ 2y - 3 = 0 <=> (y +1)= 4 => y + 1 = 2 hoặc y + 1 = -2 => y = 1 hoặc y = -3

tương tự, a = 3; b = 8

Vậy nghiệm của hệ là (x; y) = (2;1)(2;-3)(-4;1); (-4;-3) ; (1;2); (-3;2); (1;-4); (3;-4)

b)  Vì a = x(x+2) => x2 + 2x = a <=> (x+1)= a+ 1; b = y(y + 2) => (y +1)2  = b + 1

=> a+ 1 \(\ge\) 0 và b+ 1 \(\ge\) 0 <=> a ; b \(\ge\) -1

Để hệ có nghiệm <=>  (*) có 2  nghiệm t1; t2   \(\ge\) -1 

<=> \(\Delta\) \(\ge\) 0 ; t1 \(\ge\) -1; t2 \(\ge\) -1

+) \(\Delta\) \(\ge\) 0 <=> 121 - 4m \(\ge\) 0 <=> 30,25 \(\ge\) m

+)  t1 \(\ge\) -1; t2 \(\ge\) -1 <=> t1 +1 \(\ge\) 0 ; t2 + 1 \(\ge\) 0 

<=> (t1 + 1) + (t2 + 1) \(\ge\) 0 và (t1 + 1)(t2 + 1) \(\ge\) 0

Theo hệ thức Vi ét ta có : t1 + t = 11/2 = 5,5; t1.t2 = m 

Suy ra (t1 + 1) + (t2 + 1)  =7,5  \(\ge\) 0  (đúng) và (t1 + 1)(t2 + 1) = t1.t2 + (t+ t2) + 1 = m + 5,5 + 1 = m + 6,5  \(\ge\) 0 => m \(\ge\) - 6 ,5 

Vậy để hệ có nghiệm <=> -6,5 \(\le\) m \(\le\) 30,25 

3 tháng 2 2021

Thay m=2 vào HPT ta có: 

\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Vậy HPT có nghiemj (x;y) = (3;-11)

3 tháng 2 2021

nghiệm là (3;-1) nhé

a: x+my=1 và -mx+y=m

Khi m=2 thì x+2y=1 và -2x+y=2

=>x=-3/5; y=4/5

b: 1/-m<>m/1

nên hệ luôn có nghiệm duy nhất

c: x+my=1 và -mx+y=m

=>x=1-my và -m(1-my)+y=m

=>x=1-my và -m+m^2y+y=m

=>x=1-my và y(m^2+1)=-2m

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-2m}{m^2+1}\\x=1-\dfrac{-2m^2}{m^2+1}=\dfrac{m^2+1+2m^2}{m^2+1}=\dfrac{3m^2+1}{m^2+1}\end{matrix}\right.\)

x<1; y<1

=>\(\left\{{}\begin{matrix}\dfrac{-2m}{m^2+1}-1< 0\\\dfrac{3m^2+1-m^2-1}{m^2+1}< 0\end{matrix}\right.\)

=>-2m-m^2-1<0 và 2m^2<0

=>\(m\in\varnothing\)

a) Thay m=2 vào hệ phương trình, ta được: 

\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3y=3\\x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=5+2y=5+2\cdot\left(-1\right)=3\end{matrix}\right.\)

Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là (x,y)=(3;-1)