Cho hệ phương trình:
x2+y2+2x+2y=11
xy(x+2)(y+2)=m
a) Giải hệ pt khi m = 24
b) Tìm m để hệ pt có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay m=2 vào HPT ta có:
\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Vậy HPT có nghiemj (x;y) = (3;-11)
a: x+my=1 và -mx+y=m
Khi m=2 thì x+2y=1 và -2x+y=2
=>x=-3/5; y=4/5
b: 1/-m<>m/1
nên hệ luôn có nghiệm duy nhất
c: x+my=1 và -mx+y=m
=>x=1-my và -m(1-my)+y=m
=>x=1-my và -m+m^2y+y=m
=>x=1-my và y(m^2+1)=-2m
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-2m}{m^2+1}\\x=1-\dfrac{-2m^2}{m^2+1}=\dfrac{m^2+1+2m^2}{m^2+1}=\dfrac{3m^2+1}{m^2+1}\end{matrix}\right.\)
x<1; y<1
=>\(\left\{{}\begin{matrix}\dfrac{-2m}{m^2+1}-1< 0\\\dfrac{3m^2+1-m^2-1}{m^2+1}< 0\end{matrix}\right.\)
=>-2m-m^2-1<0 và 2m^2<0
=>\(m\in\varnothing\)
a) Thay m=2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=3\\x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=5+2y=5+2\cdot\left(-1\right)=3\end{matrix}\right.\)
Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là (x,y)=(3;-1)
x2 + y2 + 2x + 2y = 11 <=> (x2 + 2x) + (y2 + 2y) = 11 <=> x(x + 2) + y(y +2) = 11
xy(x+2)(y+2) = m <=> [x(x+2)].[y(y+2)] = m
đặt a = x(x+2); b = y(y +2)
Khi đó ta có hệ phương trình: a + b = 11; ab = m
Theo hệ thức Vi ét đảo => a; b là ngiệm của phương trình t2 - 11t + m = 0 (*)
a) khi m = 24 .
(*) <=> t2 - 11t + 24 = 0 <=> t2 - 3t - 8t + 24 = 0 <=> (t - 3).(t - 8) = 0 <=> t = 3 hoặc t = 8
=> a = 8 ; b = 3 hoặc a = 3; b = 8
+) a =8 => x(x+2) = 8 => x2 + 2x - 8 = 0 => (x+1)2 = 9 <=> x + 1 = 3 hoặc x+ 1 = -3 <=> x = 2 hoặc x = -4
b = 3 => y(y +2) = 3 <=> y2 + 2y - 3 = 0 <=> (y +1)2 = 4 => y + 1 = 2 hoặc y + 1 = -2 => y = 1 hoặc y = -3
tương tự, a = 3; b = 8
Vậy nghiệm của hệ là (x; y) = (2;1)(2;-3)(-4;1); (-4;-3) ; (1;2); (-3;2); (1;-4); (3;-4)
b) Vì a = x(x+2) => x2 + 2x = a <=> (x+1)2 = a+ 1; b = y(y + 2) => (y +1)2 = b + 1
=> a+ 1 \(\ge\) 0 và b+ 1 \(\ge\) 0 <=> a ; b \(\ge\) -1
Để hệ có nghiệm <=> (*) có 2 nghiệm t1; t2 \(\ge\) -1
<=> \(\Delta\) \(\ge\) 0 ; t1 \(\ge\) -1; t2 \(\ge\) -1
+) \(\Delta\) \(\ge\) 0 <=> 121 - 4m \(\ge\) 0 <=> 30,25 \(\ge\) m
+) t1 \(\ge\) -1; t2 \(\ge\) -1 <=> t1 +1 \(\ge\) 0 ; t2 + 1 \(\ge\) 0
<=> (t1 + 1) + (t2 + 1) \(\ge\) 0 và (t1 + 1)(t2 + 1) \(\ge\) 0
Theo hệ thức Vi ét ta có : t1 + t2 = 11/2 = 5,5; t1.t2 = m
Suy ra (t1 + 1) + (t2 + 1) =7,5 \(\ge\) 0 (đúng) và (t1 + 1)(t2 + 1) = t1.t2 + (t1 + t2) + 1 = m + 5,5 + 1 = m + 6,5 \(\ge\) 0 => m \(\ge\) - 6 ,5
Vậy để hệ có nghiệm <=> -6,5 \(\le\) m \(\le\) 30,25