Cho tam giác ABC đều và M tuỳ ý trong tam giác đó. Gọi A',B',C' là điểm đối xứng của M qua BC,CA,AB. Chứng minh tam gác ABC và tam giác A'B'C'. có cùng trọng tâm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H, K lần lượt là trung điểm của BC, C'A'
\(\Delta A'BC'\)cân tại B có \(\widehat{A'BC'}=120^0\)\(\Rightarrow\widehat{BC'A'}=\widehat{BA'C'}=30^0\)
\(\Rightarrow\Delta BKC'\)là nửa tam giác đều
\(\Rightarrow BK=\frac{1}{2}BC'\)(1)
\(AH\perp BC\)(do \(\Delta ABC\)đều) nên \(\Delta ABH\)là nửa tam giác đều
\(\Rightarrow BH=\frac{1}{2}AB\)(2)
Từ (1) và (2) suy ra \(\frac{BK}{BC'}=\frac{BH}{AB}\)
Ta có: \(\widehat{KBH}=60^0-\widehat{ABK}=\widehat{ABC'}\)
\(\Delta KBH\)và \(\Delta C'BA\)có: \(\frac{BK}{BC'}=\frac{BH}{BA}\left(cmt\right)\); \(\widehat{KBH}=\widehat{C'BA}\left(cmt\right)\)
\(\Rightarrow\Delta KBH~\Delta C'BA\left(c-g-c\right)\)
\(\Rightarrow\frac{KH}{C'A}=\frac{1}{2}\Rightarrow\frac{KH}{AB'}=\frac{1}{2}\)và \(\widehat{C'AB}=\widehat{KHB}\)
Ta có: \(\widehat{HAB'}=\widehat{B'AC'}-\left(30^0+\widehat{C'AB}\right)\)
\(=\left(\widehat{B'AC'}-30^0\right)-\widehat{C'AB}=90^0-\widehat{KHB}=\widehat{KHA}\)
Mà \(\widehat{HAB'}\)và \(\widehat{KHA}\)ở vị trí so le trong nên KH // AB'
\(\Rightarrow\frac{KG}{GB'}=\frac{GH}{GA}=\frac{KH}{AB'}=\frac{1}{2}\)
hay \(\frac{B'G}{KB'}=\frac{GA}{HA}=\frac{2}{3}\)
Điều này chứng tỏ \(\Delta ABC\)và \(\Delta A'B'C'\)có cùng trọng tâm (đpcm)
bạn chịu khó gõ link này lên google
https://olm.vn/hoi-dap/detail/251347049833.html