Tính nhanh
\(\frac{4^6.3^4.9^5}{6^{12}}\)
\(\frac{3^{10}.11+9^5.5}{3^9.2^4}\)
2100-299-298-..-22-2
38:36+(22)4:29
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(1+1+1+1+1+1+1+1)+(1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45)
Đặt A = 1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
Ta có:
A x 1/2= 1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
1/6=1/2x3=1/2-1/3
1/12=1/3x4=1/3-1/4
……………………
1/90=1/9x10=1/9-1/10
A x 1/2=1/2-1/3+1/3-1/4+1/4-1/5+…+1/9-1/10
A x 1/2=1/2-1/10=4/10
A=4/10:1/2=4/5
Vậy 4/3+7/6+11/10+16/15+22/21+29/28+37/36+46/45=1+1+1+1+1+1+1+1+4/5=8+4/5=44/5
\(\frac{4}{3}+\frac{7}{6}+\frac{11}{10}+...+\frac{46}{45}\)
\(=1+\frac{1}{3}+1+\frac{1}{6}+1+\frac{1}{10}+...+1+\frac{1}{45}\)
\(=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\right)\)(8 chữ số 1)
\(=8+\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\right)\)
Đặt A = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\)
=> \(\frac{1}{2}\)A = \(\frac{1}{2}\times\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\right)\)
= \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
Vậy A = \(\frac{2}{5}:\frac{1}{2}=\frac{4}{5}\)
Do đó biểu thức trên là 8 + \(\frac{4}{5}\) = \(\frac{44}{5}\)
Đáp số: \(\frac{44}{5}\)
M=1+2-3-4+5+6-7-8+9+10-11-12+....+....298-299-300+301+302
M=1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+........+(298-299-300+301)+302
M=1+0+0+0+.........................+0+302
M=303
= 2100 - (299 + 298 + ... + 22 + 2)
Đặt A = 299 + 298 + ... + 22 + 2
2A = 2100 + 299 + ... + 23 + 22
2A - A = (2100 + 299 + ... + 23 + 22) - (299 + 298 + ... + 22 + 2)
A = 2100 - 2
Ta có:
2100 - 299 - 298 - ... - 22 - 2
= 2100 - (2100 - 2)
= 2100 - 2100 + 2
= 0 + 2
= 2
= 32 + 28 : 29
\(=9+\frac{1}{2}\)
\(=\frac{18}{2}+\frac{1}{2}=\frac{19}{2}\)