Tính:
\(\left(\frac{\frac{17}{24}.9\frac{1}{2}-3\frac{1}{4}.\frac{17}{24}}{3\frac{1}{2}.2\frac{13}{36}+2\frac{13}{36}.2\frac{3}{4}}-\frac{1}{2}\right)^{-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 5/7.(1+9/13) − 5/7.9/13
A= 5/7.(1+9/13 - 9/13)
A = 5/7.1
A = 5/7
B = 11/24 − 5/41 + 13/24 + 0.5 − 36/41
B = (11/24 + 13/24) - (5/41 + 36/41) + 0.5
B = 1 - 1 + 0.5
B = 0.5
C = −4/13.5/17 + (−12/13).4/17 + 4/13
C = 4/13.(-5/17) + (−12/13).4/17 + 4/13
C = 4/13.(-5/17 + 1) + (−12/13).4/17
C = 4/13.(−12/17) + (−12/13).4/17
C = (4.-12)/(13.17) + (−12/13).4/17
C = 4/17.(−12/13) + (−12/13).4/17
C = 4/17.(−12/13).2
C = 96/221
D = (4/3 − 3/2)2 − 2.∣−1/9∣ + (−5/18)
D = (4/3 − 3/2)2 − 2.1/9+ (−5/18)
D = -1/62 - 2/9+ (−5/18)
D = -1/12 - ( 2/9+ (−5/18) )
D = -1/12 - ( 4/18+ (−5/18) )
D = -1/12 - (-1/18)
D = -1/12 + 1/18
D = -3/36 + 2/36
D = -1/36
E = (−3/4 + 2/3):5/11 + (−1/4 + 1/3):5/11
E = (−3/4 + 2/3 + (−1/4) + 1/3):5/11
E = ((−3/4 + (−1/4)) + (2/3 + + 1/3)):5/11
E = ( - 1 + 1):5/11
E = 0:5/11
E = 0
a) \(\frac{17}{9}-\frac{17}{9}:\left(\frac{7}{3}+\frac{1}{2}\right)\)
= \(\frac{17}{9}-\frac{17}{9}:\frac{17}{6}\)
= \(\frac{17}{9}-\frac{2}{3}\)
= \(\frac{11}{9}\)
b) \(\frac{4}{3}.\frac{2}{5}-\frac{3}{4}.\frac{2}{5}\)
= \(\frac{2}{5}.\left(\frac{4}{3}-\frac{3}{4}\right)\)
= \(\frac{2}{5}.\frac{7}{12}\)
= \(\frac{7}{30}\)
Mình lười làm quá, hay mình nói kết quả cho bn thôi nha
c) -6
d) 3
e) 3
g) 12
h) \(\frac{23}{18}\)
i) \(\frac{-69}{20}\)
k) \(\frac{-1}{2}\)
l) \(\frac{49}{5}\)
a) \(\frac{15}{12}+\frac{5}{13}-\frac{3}{12}-\frac{18}{13}=\left(\frac{15}{12}-\frac{3}{12}\right)+\left(\frac{5}{13}-\frac{18}{13}\right)\)
\(=1+\left(-1\right)\)
\(=0\)
b) \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+0,5-\frac{36}{41}=\left(\frac{11}{24}+\frac{13}{24}\right)+\left(-\frac{5}{41}-\frac{36}{41}\right)+0,5\)
\(=1+\left(-1\right)+0,5\)
\(=0,5\)
_Học tốt nha_
a, \(\frac{15}{12}\)+ \(\frac{5}{13}\)- \(\frac{3}{12}\)-\(\frac{18}{13}\)
= \(\frac{5}{4}\)+ \(\frac{5}{13}\) - \(\frac{1}{4}\) - \(\frac{18}{13}\)
= \(\left(\frac{5}{4}-\frac{1}{4}\right)\)+ \(\left(\frac{5}{13}-\frac{18}{13}\right)\)
= 1 - 1 = 0
b, \(\frac{11}{24}\)- \(\frac{5}{41}\)+ \(\frac{13}{24}\)+ 0,5 - \(\frac{36}{41}\)
= \(\left(\frac{11}{24}+\frac{13}{24}\right)\)- \(\left(\frac{5}{41}+\frac{36}{41}\right)\)+ 0,5
= 1 - 1 + 0,5 = 0,5
c, \(\left(-\frac{3}{4}+\frac{2}{3}\right):\frac{5}{11}+\left(-\frac{1}{4}+\frac{1}{3}\right):\frac{5}{11}\)
=\(\left(-\frac{3}{4}+\frac{2}{3}\right).\frac{11}{5}+\left(-\frac{1}{4}+\frac{1}{3}\right).\frac{5}{11}\)
= \(\frac{11}{5}.\left(-\frac{3}{4}+\frac{2}{3}-\frac{1}{4}+\frac{1}{3}\right)\)
= \(\frac{11}{5}.\left[\left(-\frac{3}{4}-\frac{1}{4}\right)+\left(\frac{2}{3}+\frac{1}{3}\right)\right]\)
= \(\frac{11}{5}.\left[\left(-1\right)+1\right]\)
= 0
d, \(\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-\left(3\frac{1}{2}-1\frac{1}{2}\right)\)
= \(9.\left(0,75-0,25\right)-2\)
= 9. 0,5 - 2 = 2,5
e, \(\frac{13}{25}+\frac{6}{41}-\frac{38}{25}+\frac{35}{41}-\frac{1}{2}\)
= \(\left(\frac{13}{25}-\frac{38}{25}\right)+\left(\frac{6}{41}+\frac{35}{41}\right)-\frac{1}{2}\)
= -1 + 1 - \(\frac{1}{2}\)
= \(-\frac{1}{2}\)
b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=\frac{-2}{3}\)
d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}=\frac{2}{13}\)
Làm tiếp:
\(=\left(1+\frac{1}{2}+.....+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+....+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+.........+\frac{1}{2017}\)
\(\Rightarrow\frac{\frac{1}{1009}+....+\frac{1}{2017}}{1-\frac{1}{2}+.....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}=1\)
Bài 2:
Đặt \(A=\frac{1}{2^2}+.......+\frac{1}{2^{800}}\)
\(4A=1+\frac{1}{2^2}+.....+\frac{1}{2^{798}}\)
\(\Rightarrow4A-A=1-\frac{1}{2^{800}}\)
\(\Rightarrow3A=1-\frac{1}{2^{800}}< 1\Rightarrow A< \frac{1}{3}\)
Vậy \(\frac{1}{2^2}+\frac{1}{2^4}+........+\frac{1}{2^{800}}< \frac{1}{3}\)
Bài 1:Tính
a, Xét biểu thức \(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).........\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)..........\left(1+\frac{n+2}{n}\right)}\) với\(n\in N\)
Ta có:\(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).......\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)......\left(1+\frac{n+2}{n}\right)}\)
\(=\frac{\frac{n+1}{1}.\frac{n+2}{2}........\frac{2n+2}{n+2}}{\frac{n+3}{1}.\frac{n+4}{2}.........\frac{2n+2}{n}}\)
\(=\frac{\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right)}{1.2.3.........\left(n+2\right)}}{\frac{\left(n+3\right)\left(n+4\right)........\left(2n+2\right)}{1.2.3.........n}}\)
\(=\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right).1.2.3.......n}{\left(n+3\right)\left(n+4\right)........\left(2n+2\right).1.2.3......\left(n+2\right)}\)
\(=\frac{\left(n+1\right)\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}=1\)
Áp dụng vào bài toán ta có đáp số là:1
b, \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=-\frac{2}{3}\)
c,\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}=\frac{\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}{\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}=\frac{\frac{1}{3}}{\frac{1}{4}}=12\)
d,\(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}=\frac{2}{13}\)
e,Xét mẫu số ta có:
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)
\(=1+\frac{1}{2}-2.\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-2.\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-2.\frac{1}{2016}+\frac{1}{2017}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{2016}\right)\)
\(\left(\frac{\frac{17}{24}.9\frac{1}{2}-3\frac{1}{4}.\frac{17}{24}}{3\frac{1}{2}.2\frac{13}{36}+2\frac{13}{36}.2\frac{3}{4}}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{\frac{17}{24}.\left(9\frac{1}{2}-3\frac{1}{4}\right)}{2\frac{13}{36}.\left(3\frac{1}{2}+2\frac{3}{4}\right)}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{\frac{17}{24}.\left(\frac{19}{2}-\frac{13}{4}\right)}{\frac{85}{36}.\left(\frac{7}{2}+\frac{11}{4}\right)}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{\frac{17}{24}.\frac{19.2-13}{4}}{\frac{85}{36}.\frac{7.2+11}{4}}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{\frac{17}{24}.\frac{25}{4}}{\frac{85}{36}.\frac{25}{4}}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{17}{24}:\frac{85}{36}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{17}{24}.\frac{36}{85}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{3}{10}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{3-5}{10}\right)^{-2}\)
\(=\left(\frac{-1}{5}\right)^{-2}\)
\(=\frac{1}{\left(-\frac{1}{5}\right)^2}=\frac{1}{\frac{\left(-1\right)^2}{5^2}}=\frac{1}{\frac{1}{25}}=25\)