Cho tam giác ABC vuông tại B có AC=8cm góc BCA=54°.trên nữa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho góc ACD=74° và AD=9,6 cm
a/Tính AB
b/Tính số đo góc ADC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua E kẻ đường thảng song song với AC cắt tia BA tại F.
Ta có: FE//AD; AF//DE => AD=FE; AF=DE (Tcđoạn chắn) Mà AD=DE => AD=DE=FE=AF
FE//AC; AC vuông góc AB => FE vuông góc AB => ^BFE = 900
AB=a; AC=3a; AD=a (D thuộc AC); AD=AF => AB+AF=2a=BF; DC=3a-a=2a=CD
=> BF=CD
Xét tam giác BFE và tam giác CDE: EF=ED; ^BFE=^CDE=900; BF=CD
=> Tam giác BFE= Tam giác CDE (c/g/c)
=> BE=EC và ^BEF=^CED.
thấy ^BEF+^BED=900 => ^CED+^BED=^BEC=900
Xét tam giác BEC: BE=EC; ^BEC=900 => Tam giác BEC vuông cân tại E
=> ^BCE=450.
Dùng hình của bạn Mai nhé.
Kẽ DP và EQ \(⊥\)HK tại P và Q.
Xét \(\Delta DPA\)và \(\Delta AHB\)có
\(\hept{\begin{cases}\widehat{DPA}=\widehat{AHB}=90\\DA=AB\\\widehat{PDA}=\widehat{HAB}\left(phu\widehat{PAD}\right)\end{cases}}\)
\(\Rightarrow\Delta DPA=\Delta AHB\)
\(\Rightarrow DP=AH\left(1\right)\)
Xét \(\Delta EQA\)và \(\Delta AHC\)có
\(\hept{\begin{cases}\widehat{EQA}=\widehat{CHA}=90\\EA=CA\\\widehat{QEA}=\widehat{HCA}\left(phu\widehat{QAE}\right)\end{cases}}\)
\(\Rightarrow\Delta EQA=\Delta AHC\)
\(\Rightarrow EQ=AH\left(2\right)\)
Từ (1) và (2) \(\Rightarrow DP=EQ\)
Xét \(\Delta DPK\)và \(\Delta EQK\)có
\(\hept{\begin{cases}\widehat{DPK}=\widehat{EQK}=90\\DP=EQ\\\widehat{DKP}=\widehat{EKQ}\end{cases}}\)
\(\Rightarrow\Delta DPK=\Delta EQK\)
\(\Rightarrow DK=EK\)
Vậy K là trung điểm của DE