CMR
(222^333 +333^222)chia hết cho 13
(36^36-9^10)chia hết cho 45
Ai nhanh mk like
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hằng đẳng thức sau
an−1=(a−1).[an−1+an−2+...+1]=(a−1).pan−1=(a−1).[an−1+an−2+...+1]=(a−1).p (nn là 1 số nguyên dương)
an+1=(a+1).[an−1−an−2+..+1]=(a+1).qan+1=(a+1).[an−1−an−2+..+1]=(a+1).q (nn là 1 số nguyên dương lẻ)
Thay vào ta được như sau:
+) 222333−1=(222−1).p=13.17.p222333−1=(222−1).p=13.17.p
+) 333222+1=(3332)111+1=110889111+1=(110889+1).q=13.8530.q333222+1=(3332)111+1=110889111+1=(110889+1).q=13.8530.q
=>=> 222333+333222=222333−1+333222+1=13(17p+8530q)⋮13222333+333222=222333−1+333222+1=13(17p+8530q)⋮13
Vậy: 222333+333222⋮13222333+333222⋮13 (đpcm)(đpcm)
\(222^{333}+333^{222}=\left(2^3\right)^{111}+\left(3^2\right)^{111}=8^{111}+9^{111}=\left(8+9\right)\cdot Q=17\cdot Q⋮17\)
Có thể mình làm sai hoặc bạn nhầm đề rồi nha!
cảm ơn bạn nhiều mình không chắc là mình viết đứng ko nữa dù sao cũng cảm ơn bạn vì đã giúp mình
Ta có:
\(222^{333}+333^{222}=111^{333}.2^{333}+111^{222}.3^{222}\)
\(=111^{222}\left[\left(111.2^3\right)^{111}+\left(3^2\right)^{111}\right]\)
\(=111^{222}\left(888^{111}+9^{111}\right)\)
\(\Rightarrow888^{111}+9^{111}\)
\(=\left(888+9\right)\left(888^{110}-888^{109}.9+...-888.9^{109}+9^{110}\right)\)
\(=13.69.\left(888^{110}-888^{109}.9+...-9^{109}+9^{110}\right)\)
\(=13.69.Q\)
\(\Rightarrow222^{333}+333^{222}⋮13\) (Đpcm)
Áp dụng công thức :\(a^n+b^n\) chia hết cho a+b
\(VT=\left(222^3\right)^{111}+\left(333^2\right)^{111}\) chia hết cho \(222^3+333^2\)
\(222^3\) chia 13 dư 1 (bấm máy tính )
\(333^2\) chia 13 dư 12
\(\Rightarrow222^3+333^2\) chia hết cho 13
\(\Rightarrow\) đpcm
Ta có 222 ≡ 1(mod 13) nên 222^333 ≡ 1 (mod 13)
Và 333^2 ≡ -1 (mod 13) nên 333^222 ≡ -1 (mod 13)
Cộng lại ta có:
222^333 + 333^222 ≡ 0 (mod 13) đpcm
Bài 2:
Ta có 109^3 ≡ 1 (mod 7) nên 109^345 ≡ 1( mod 7)
Vậy số dư của phép chia trên là 1
Chứng minh: a,222^333+333^222 chia hết cho 13
b, 3^105+4^105 chai hết cho 13 nhưng ko chia hết cho 11
a)
Ta có: \(222^{333}=\left(222^3\right)^{111}\equiv1^{111}=1\left(mod13\right)\)
\(\Rightarrow222^{333}+333^{222}\equiv1+333^{222}=1+\left(333^2\right)^{111}\)
\(\equiv1+12^{111}\equiv1+12^{110}\cdot12\equiv1+\left(12^2\right)^{55}\cdot12\)
\(\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)
Vậy $222^{333}+333^{222}$ chia hết cho $13.$
b) Ta có:
\(3^{105}\equiv\left(3^3\right)^{35}\equiv1^{35}\equiv1\) (mod13)
\(\Rightarrow3^{105}+4^{105}\equiv1+4^{105}\equiv1+\left(4^3\right)^{35}\)
\(\equiv1+12^{35}\equiv1+\left(12^2\right)^{17}\cdot12\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)
Vậy $3^{105}+4^{105}$ chia hết cho $13.$
Lại có:
\(3^{105}\equiv\left(3^3\right)^{35}\equiv5^{35}\equiv\left(5^5\right)^7\equiv1\left(mod11\right)\)
\(4^{105}\equiv\left(4^3\right)^{35}\equiv9^{35}\equiv\left(9^5\right)^7\equiv1\left(mod11\right)\)
Từ đây:\(3^{105}+4^{105}\equiv1+1\equiv2\left(mod11\right)\)
Vậy $3^{105}+4^{105}$ không chia hết cho $11.$
P/s: Rất lâu rồi không giải, không chắc.
\(\left(222^{333}+333^{222}\right)⋮13\)
Áp dụng hằng đẳng thức sau
an−1=(a−1).[an−1+an−2+...+1]=(a−1).pan−1=(a−1).[an−1+an−2+...+1]=(a−1).p (nn là 1 số nguyên dương)
an+1=(a+1).[an−1−an−2+..+1]=(a+1).qan+1=(a+1).[an−1−an−2+..+1]=(a+1).q (nn là 1 số nguyên dương lẻ)
Thay vào ta được như sau:
+) 222333−1=(222−1).p=13.17.p222333−1=(222−1).p=13.17.p
+) 333222+1=(3332)111+1=110889111+1=(110889+1).q=13.8530.q333222+1=(3332)111+1=110889111+1=(110889+1).q=13.8530.q
=>=>222\(222\)333+333222=222333−1+333222+1=13(17p+8530q)⋮13
bác nên nhớ là lp 6 chưa hs hđt nhé nên ko đc áp dụng -_-